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Abstract
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also introduce a way to obtain unspanned risks from the yield curve that is used to com-
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1 Introduction

In recent years, many studies had shed light on a critical assumption in macro-finance

models, the expectations hypothesis. As more evidence is gathered, there is a growing

consensus in the literature to refute it, implying that excess returns of Treasuries bonds in

some extent should be forecastable. Equally important is the spanning hypothesis, that can

be summarized in the idea that the yield curve incorporates all the information useful for

forecasting interest rates, and consequently, bonds returns. However, to what extent the

spanning hypothesis holds true is still open in the literature.

An important question that could assist to elucidate the whole bond premia problem is

related with the factor structure of expected returns. Is there a factor representation? If so,

what is its structure? In this article, we study the time variation of the risk premia in U.S.

Treasuries bonds. We provide a new approach for the factor structure of the expected returns

of bonds. Recently, Cochrane (2015) argued that it is possible that there is a dominant single

factor structure for bond returns, in such a way that risk premiums rise and fall together.

A central question, in his words, is: what is the linear combination of forecasting variables

that captures common movement in expected returns across assets?

In Cochrane and Piazzesi (2005), the authors took this path. Ludvigson and Ng (2009)

derived a single factor as well, however not consistent with the spanning hypothesis. Recent

papers (see, e.g., Cieslak and Povala (2015); Lee (2018)) obtained other factors as well,

some of them not necessarily aligned with the spanning hypothesis. Nonetheless, Bauer and

Hamilton (2018) argued that evidence against the spanning hypothesis for several recent

studies should be weaker when more robust tests are used.

In this paper, we take a different route. We argue that this search for deriving, building

and estimating factors that represent state variables in macro-finance models may be limited.

We claim that the process done by financial economists of manually discovering and hand

picking this list of factors may be leaving out unseen relationships between the state variables

in their derivation.

We propose a novel approach for deriving a single state factor consistent with a dynamic

term-structure with unspanned risks theoretically motivated model. To do so, we make use

of one of the most powerful approaches in machine learning, namely a deep neural network

to uncover relationships in the full set of information from the yield curve. We derive a single

state variable factor that should provide a better approximation to the spanned space of all

the information from the term-structure.

In our methodology, we introduce a way to obtain unspanned risks from the yield curve

that is used to complete our state space. This unspanned factor can fill the gap left by
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the spanning factor. The whole structure can be explained by a dynamic term-structure

with unspanned risks, be macroeconomic, sentiment, or any other economy risk (since our

methodology makes no differentiation or segregation among them) as an extension from the

model proposed by Joslin et al. (2014). We show that a small numbers of state variables (in

our framework only two), have predictive power for excess returns of bonds over 1-month

holding period. Additionally, we provide an intuitive interpretation of derived factors, and

show what information from macroeconomic variables and sentiment-based measures they

can capture.

In our empirical analysis, we use the daily treasury parameters from Gürkaynak et al.

(2007) to build the monthly excess returns. As we are interested in the short part of term

structure, we deal with yields ranging up to five years ahead. Thus, we work with 60

observations at each month to better capture the information from the term structure. Our

data spans from 1962 to 2017, and we use the data from 1962-1992 to initialize the process

of obtaining our recursively updated latent factors in order to build a single spanning and

unspanning factor for the period from 1993-2017.

The recursive process is done through a pre-designed architecture of a deep neural network

that is fed solely with the high-dimensional set of monthly with different maturities. This

architecture generates one latent factor for the two, three, four, and five years excess returns.

Then, these recursively updated parameters are combined in a single spanning factor. The

unspanned factor also has recursively updated parameters that are obtained through an

orthogonalization process at each month, and then linearly combined into one single factor.

We evaluate our factors for the period of 1993-2017 and compare their predictability with

the main factors in the literature, such as Cochrane and Piazzesi (2005), Ludvigson and Ng

(2009), and Fama and Bliss (1987). We also perform an out-of-sample experiment to assess

the statistical evidence in bond return predictability for the period 1997-2017.

We contribute to the literature in a number of different ways. First, to the best of our

knowledge, we are the first to introduce a deep neural network-based structure to generate

a single spanning factor, as well as an unspanned factor, with recursively updated latent

factors. Thus, we are able to introduce nonlinearities when modeling the bond risk premia

in our first step of the recursive process, while still making use of a linear combination

of these latent factors in the second step, to provide a novel interpretation for the bond

risk premia, as proposed by Cochrane’s question. This is consistent with recent findings

from some works in empirical finance (see, e.g., Gu et al. (2018); Bianchi et al. (2019))

that document the importance of allowing for nonlinearities. It is known that with neural

networks we can introduce flexibility and complex nonlinear relationships from the inputs

while approximating arbitrarily well a rich set of smooth functions.
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Second, motivated by Bauer and Hamilton (2018) that document that the use of over-

lapping 12-month returns is prone to a number of problematic features, as it introduces

substantial serial correlation in the predictive errors, we deviate from previous works that

made use mainly of 12-month holding period, as we handle this issue with the use of non-

overlapping returns. Furthermore, we are interested to obtain these factors to the short part

of the term structure, and to do so we take into consideration the whole term structure at

the higher frequency of 1-month holding period with maturities ranging up to 60 months

ahead, allowing us to avoid to handpick only a subset of yields.

Third, we take a broader interpretation of the unspanning factor. Thus, our derived

unspanned factor is more flexible, as it can be linked with other sources of risks, not limiting

only to macroeconomics variables, but also with sentiment-based variables. And fourth, our

approach avoids hand-picking the variables from the yield curve, as through our deep neural

network we are able to recursively learn the best-approximating1 function that condenses

the yield curve into a single latent factor.

1.1 Related Literature

Our paper is related to several strands of the literature. This paper is related with the so

known “spanning puzzle” which pertains a possible conflict between the theoretical spanning

condition, in which the yield curve captures all the information for forecasting future yields

and returns, and the use of unspanned macro information for these problems. Ludvigson and

Ng (2009), Cooper and Priestley (2009), and Cieslak and Povala (2015) provide evidence that

macroeconomic variables have predictive power for excess bond. On the other hand, Ghysels

et al. (2018) show that the use of real time data substantially reduces the predictive power

of macro variables for future bond. Bauer and Hamilton (2018) show that non spanning

predictors proposed in the literature is weaker than expected, while Bauer and Rudebusch

(2017) argue that the evidence from unspanned regressions cannot provide statistical basis

for preferring either unspanned or spanned models.

Our work is also linked to a literature at the intersection of bond premia and sequential

learning. Gargano et al. (2019) and Dubiel-Teleszynski et al. (2019) make use of a Bayesian

learning approach in the context of bond risk premia. The former accounts for time-varying

parameters, stochastic volatility, and parameter estimation error; while the latter implement

the learning framework under a dynamic term structure model.

This paper is also related with the recent surge in the use of machine-learning and its

growing impact in the field of economics, as reviewed in Mullainathan and Spiess (2017);

1For a given loss function.
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Athey (2018); Athey and Imbens (2019); Varian (2014). This paper is also motivated by

recent advances in the statistical properties of machine learning techniques, in especial the

theoretical properties of inference using deep neural networks . Farrell et al. (2021), provide

nonasymptotic bounds and convergence rates for nonparametric estimation using deep neural

networks, and establishes valid inference on finite-dimensional parameters following first-step

estimation using deep learning.

The use of recent machine-learning techniques in empirical finance has gotten special

interest in the past years. Many papers have been interested in the dimensionality reduction,

especially through penalized regression framework, such as LASSO, Ridge and Elastic-Net

(see, e.g., Kozak et al. (2019); Freyberger et al. (2017)). Deep learning and some variations

of deep neural networks, such as autoenconders, were used in some recent papers (Gu et al.,

2018, 2020; Chen et al., 2019; Feng et al., 2018a,b; Heaton et al., 2017, 2016).

Specifically in macro-finance, Bianchi et al. (2019) and Huang and Shi (2019) make

use of machine-learning techniques to model or evaluate bond return predictability. Huang

and Shi (2019) use Supervised Adaptive Group LASSO to capture macroeconomic risks,

and construct a single unspanned factor from a panel of 131 macro variables. Bianchi et al.

(2019) seek to compare and evaluate several machine learning algorithms for the sole purpose

of prediction of the US Treasury bonds excess returns. Their analysis ranges from penalized

linear regressions, partial least squares, regression trees, random forests, and finally neural

networks. The authors find evidence that non-linear methods can provide favorable out-of-

sample prediction of bond excess returns. Our work builds on some of the insights from

Bianchi et al. (2019) with regard of the use of deep neural networks to understanding bond

premia. Nonetheless, our approach detours from their work in numerous ways, being the

most important our goal to build a spanning and an unspanned factor from a deep neural

network.

The structure of this paper is as follows. Next section introduces the general frame-

work, contextualize the expectations and spanning hypothesis, and explain the deep-learning

structure that we propose for bond premia. This section also provides an illustrative term-

structure model. Section 3 explains our data, how we reconstruct the log yield of zero-

coupons, and elucidate our empirical strategy. Section 4 presents the results. Finally, section

5 concludes. Additional results, tables and figures are presented in Appendix A.1.
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2 Framework

2.1 Notation

Following the standard notation in the literature, let p
(n)
t denote the natural logarithm

of the price for a bond with n-period maturity at time t, and y represent its yield, such that:

y
(n)
t ≡ −

1

n
p

(n)
t (1)

The holding period returns of a n-period maturity bond from time t to t+ ∆ is given by:

r
(n)
t+∆ ≡ p

(n−∆)
t+∆ − p(n)

t (2)

If integers of ∆ represent years, then:

r
(n)
t+h/12 ≡ p

(n−h/12)
t+h/12 − p(n)

t

= ny
(n)
t − (n− h/12)y

(n−h/12)
t+h/12

(3)

where h is the frequency of the returns, measured in months. Thus, we can define the excess

returns as

rx
(n)
t+h/12 ≡ p

(n−h/12)
t+h/12 − p(n)

t︸ ︷︷ ︸
holding period return r

(n)
t+h/12

− (h/12)y
(h/12)
t

= ny
(n)
t − (n− h/12)y

(n−h/12)
t+h/12 − (h/12)y

(h/12)
t

(4)

Finally, we can define the forward rates at time t for loans between time t + n − h/12

and t+ n as

f
(n)
t ≡ p

(n−h/12)
t − p

(n)
t

= ny
(n)
t − (n− h/12)y

(n−h/12)
t

(5)

2.2 Expectation Hypothesis and the Spanning Hypothesis

In its most common form, the expectation hypothesis states that yields of long maturity

bonds should be the average of the future expected yield of short maturity bonds. Hence,

it is equivalent with the statement that excess returns should not be predictable. Setting
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h = 1 to express monthly frequency, the expectations hypothesis can be summarized as2

y
(n)
t ≡

1

n
Et
(
y

(1/12)
t + y

(1/12)
t+1/12 + . . .+ y

(1/12)
t+n−1/12

)
︸ ︷︷ ︸

expectations component

+ yield risk premium .
(8)

In short, we can summarize the risk premium simply as the difference between a long rate

and the expected average of future short rates. Knowing that we can express the yield risk

premium as
1

n
E
(
rx

(n)
t+1/12 + rx

(n−1/12)
t+2/12 + rx

(n−2/12)
t+3/12 + . . .+ +rx

(2/12)
t+n−1/12

)
, then we can write

y
(n)
t ≡

1

n
Et
(
y

(1/12)
t + y

(1/12)
t+1/12 + . . .+ y

(1/12)
t+n−1/12

)
+

1

n
Et
(
rx

(n)
t+1/12 + rx

(n−1/12)
t+2/12 + rx

(n−2/12)
t+3/12 + . . .+ +rx

(2/12)
t+n−1/12

)
.

(9)

As in Duffee (2013), assuming that the agents’ information set at time t can be summarized

by a k-dimensional state vector Zt, from identity 9 we obtain

y
(n)
t =

1

n

12·n/h−1∑
j=0

E
[
y

(h/12)
t+j·h/12|Zt

] +
1

n

12·n/h−1∑
j=0

[
rx

(n−j·h/12)
t+h/12(j+1)|Zt

] . (10)

In equation (10), Zt should contain all the information used by investors to forecast at time

t the excess-returns for all future periods. If we stack all yields at time t in the vector y
(n)
t ,

as

y
(n)
t = f (Zt;N) (11)

we can see that the yields must be a function only of the state vector y
(n)
t and the vector of

maturities N . The essential assumption is the existence of an inverse function f (·)−1 that

allow us to write Zt = f
(
y

(n)
t ;N ·

)−1

. This holds true, as long as exists a correspondence in

2An accounting identity makes the link between the yield of bond to the sum of one-periods (h-periods)
with the its excess returns for a n-period maturity bond as:

y
(n)
t ≡ 1

n

12·n/h−1∑
j=0

y
(h/12)
t+j·h/12

 +
1

n

12·n/h−1∑
j=0

rx
(n−j·h/12)
t+h/12(j+1)

 (6)

where j are multiple of h-periods of the defined frequency. For annual frequency, i.e., h = 12 we have:

y
(n)
t ≡ 1

n

n−1∑
j=0

y
(1)
t+j

 +
1

n

n−1∑
j=0

rx
(n−j)
t+j+1

 (7)
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such a way that each zt ∈ Zt has its own effect on the yield curve y
(n)
t . Thus, for a function

g (·) we can write Et
(
y

(n)
t

)
= g

(
y

(n)
t ;N

)
3.

As Duffee (2013) emphasizes, equation (9) determines that the expected returns depend

on at most k state variables, and inverting equation (10) tells us that with the entire yield

curve, we can disentangle shocks of the expected excess returns from shocks to expected

future yields. What boils down to estimating the function g (·). The key takeaway is that the

whole term-structure at time t contains all the information to predict Zt, and consequently

the future yield curves.

However, the literature has gathered evidence against the expectations hypothesis. Influ-

ential studies from Fama and Bliss (1987), Campbell and Shiller (1991) and Cochrane and

Piazzesi (2005) show some forecastability for excess returns. Among the most important

approaches to test the predictability of the bonds’ excess returns we have Fama and Bliss

(1987), Cochrane and Piazzesi (2005), and Ludvigson and Ng (2009). Below we succinctly

describe each one of them, as they will be used as our benchmarks.

Fama and Bliss (1987) builds forward rates spreads and use these variables as covariates.

The forward rate spread between of a n-year maturity bond is defined as fs
(n,h)
t ≡ f

(n)
t −

y
(h/12)
t (h/12). The predictive regression in the Fama-Bliss approach is given by

rx
(n)
t+h/12 = β0 + β1fs

(n,h)
t + εt+h/12 . (12)

Cochrane and Piazzesi (2005) derive a single factor to use as predictor. The authors

argue that their factor (CP h
t ), which has a peculiar tent-shape across maturities and is built

from a linear combination of forward rates has a higher predictability of excess returns on

one- to five-year maturity bonds. First, they estimate a vector γ by regressing the average

of excess returns across maturities n = 1, 2, 3, 4 on all forward rates as

1
4

∑5
n=2 rx

(n)
t+h/12 = γ0 + γ1f

(1)
t + γ2f

(2)
t + γ3f

(3)
t + γ4f

(4)
t + γ5f

(5)
t + ε̄t+h/12

rxt+h/12 = γ>ft︸︷︷︸
CPh

t

+ε̄t+h/12 (13)

where f and γ are 6 × 1 vectors given by f ≡
[
1 f

(1)
t f

(2)
t f

(3)
t f

(4)
t f

(5)
t

]>
, and

γ ≡ [γ0 γ1 γ2 γ3 γ4 γ5]>. Denoting the estimated Cochrane-Piazzesi factor as ĈP
h

t =

γ̂>f t, the predictive regression in this approach is given by

3Which implies that Et

(
rx

(n−j·h/12)
t+h/12(j+1)

)
= g

(
y
(n)
t ;N

)
also holds.
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rx
(n)
t+h/12 = β0 + β1ĈP

h

t + εt+h/12 . (14)

Another important concept derived from the majority of macro-finance models is the

spanning hypothesis. It says that all relevant information to forecast yields and excess returns

can be found on the term-structure. Hence, under the spanning hypothesis, the yields curve

fully spans all necessary information, and thus, no other variable or information already

present in the term-structure should be necessary. As Bauer and Hamilton (2018) stress,

the spanning hypothesis does not rules out the importance of macro variables (current or

future). It only says that the yield curve completely reflects and spans this information.

Ludvigson and Ng (2009) show evidence against the spanning hypothesis. Using a large

panel of macro variables, the authors build a single linear combination out of the first i

estimated principal components (ĝi,t)
4. The authors start estimating a vector λ by regressing

the average of excess returns across maturities n = 1, 2, 3, 4 on a subset of the first 8 principal

components as

1
4

∑5
n=2 rx

(n)
t+h/12 = λ0 + λ1ĝ1,t + λ2ĝ

3
1,t + λ3ĝ3,t + λ4ĝ4,t + λ5ĝ8,t + ε̄t+h/12

rxt+h/12 = λ>Ĝt︸ ︷︷ ︸
LNh

t

+ε̄t+h/12 (16)

where Ĝt and λ are 5 × 1 vectors given by Ĝt ≡
[
ĝ1,t ĝ3

1,t ĝ3,t ĝ5,t ĝ8,t

]>
, and λ ≡

[λ1 λ2 λ3 λ4 λ5]>. Denoting the estimated Ludvigson-Ng factor as L̂N
h

t = λ̂
>
Ĝt, the

predictive regression in this approach is given by

rx
(n)
t+h/12 = β0 + β1L̂N

h

t + εt+h/12 . (17)

2.3 A Deep-Learning Structure for Bond Premia

The three main approaches presented in the last section seek to provide an explanation

for the bond premia. We can summarize these approaches with the following predictive

regression

rx
(n)
t+h/12 = β>Zt + εt+h/12 (18)

4The authors consider a T ×M panel of macroeconomic variables and assume that each macro variable{
zmacro
j,t

}
has a factor structure taking the form

zmacro
j,t = ν>t gt + ej,t (15)

where gt is an s × 1 vector of latent common factors obtained through principal components analysis, and
νt is an s× 1 vector of latent factor loadings. The essential point here is that s�M .
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where Zt =
{
Zy
t ,Z

y{

t

}
is a set of state variables that could potentially forecast the excess

returns, and thus, provide evidence against the expectations hypothesis. If they rely on the

spanning hypothesis Zt = {Zy
t } and no macroeconomic variables are used to define the state

space. Evidence against the spanning hypothesis is showed when Zy{

t 6= ∅.
In this paper we argue that this search for deriving, building and estimating factors that

represent state variables in macro-finance models may be limited. We claim that the process

done by financial economists of manually discovering and hand picking this list factors may

be leaving unseen relationships between the state variables out in their derivation.

Hence, to assist in this process, we make use of one of the most powerful approaches

in machine learning, namely a deep neural network. We aim to uncover relationships and

derive a new single factor that could improve our understanding of the bond risk premia.

We make use of deep feedforward network or multilayer perceptron (MLP)5 and derive a

single factor that has predictability in an our analysis.

Deep neural networks attempt to replicate the brain architecture in a computer, in a such

a way that we must have many levels of processing information. As Murphy (2012) points

out, it is believed that each level of learning features or representations at increasing levels

of abstraction.

A deep feedforward network defines a mapping such as rx
(n)
t+h/12 = g (Zt,θt) to learn

the parameter θt that provides the best function approximation. In its most common

structure, MLP can be represented in a direct acyclic graph with a chain of functions

g (Zt) = g(L)
(
. . .
(
g(2)

(
g(1) (Zt)

)))
. The name network comes from this chain and its inter-

connectedness architecture, and feedforward because the information flows in one direction

from Zt through these functions, to finally obtain an output rx
(n)
t+h/12. The number of these

functions L defines the depth of the network, motivating the use of the name “deep learning”

to refer to this structure. We say that g(1) is the first layer, while the last one g(L) (·) is the

output layer.

As Goodfellow et al. (2016) discuss, deep feedforward network can capture the informa-

tion between any two inputs, which is a limitation that linear models such as logistic and

linear regressions face. This is done as an extension from a linear model, in such a way that

we apply a nonlinear function φ(·) in Zt, transforming our independent variable. Thus, the

model can be represented as rx
(n)
t+h/12 = g (Zt,θt,w) = φ (Zt,θt)

>w.

In this approach φ defines a hidden layer, θt the parameters used to learn φ, and w are

parameters mapping from φ (θt) to the output. An optimizing algorithm is responsible to find

θt that gives the best representation. The nonlinear function is called activation function,

which is controlled by learned parameters. Hence, we define gl (·) = g
(
W>

l Zt + c
)
, where

5They are also known as feedforward neural network
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W is a set of weights and c the biases.

One advantage of deep neural networks is based on the universal approximation theorem

(Hornik et al., 1989; Cybenko, 1989) that states that feedforward network with a linear

output layer and at least one hidden layer with any activation function can approximate any

function6 from one finite-dimensional space to another with any desired nonzero amount of

error. In short, this theorem says that a simple neural network can represent a wide variety

of functions. However it does not guarantee the training algorithm will be able to learn the

function. One implication from the universal approximation theorem is that there exists a

network large enough to achieve any degree of accuracy.

In our framework, the single factor capturing the information from the yield curve is

built in the following way. First, at each t we use the cross-section of the information on the

term-structure to feed MLPs to obtain as output a factor derived from a learning network.

We denote this deep neural network factor as fDNN .

Aligned with the results from Bauer and Hamilton (2018) who gathered evidence that

rejections of the spanning hypothesis by some recent papers is significantly weaker when

more robust methods are used to deal especially with overlapping data, we use as input in

our networks only Zy
t , which is formed by the full set of information from the yield curve.

We argue that given the superiority of deep feedforward networks to uncover relationships

between the information found in Zy
t , especially its capacity to nonlinear and more complex

associations in the data, there is a potential gain of extracting more information out of the

yield curve.

Figure 1 shows the deep feed forward architecture to obtain the DNN factor fDNN . The

depth, the width, the activation function of the deep neural network, as well as the loss

function used for training at each t are variations discussed in section 3.

Notice that there are 4 separate groups of networks. Each one of them seek to find the

function that provides the approximation g, such that the mapping is given by g(n) : Zy
t 7→

rx
(n)
t+h/12, where n ∈ {2, 3, 4, 5}, i.e., it is the mapping from the entire yield curve information

to the excess returns in the next period t+ h/12 for maturities ranging from 2 to 5 years.

Each group of network will deliver a factor associated with a maturity n at each t. After

obtaining f
(n)
t,DNN , we estimate the single factor that summarizes the all the term-structure

information to explain the excess returns. The idea is to describe the expected excess returns

of all maturities with a unique factor, as proposed initially by Cochrane and Piazzesi (2005),

and extended by others (Ludvigson and Ng, 2009; Cieslak and Povala, 2015). First, we

regress the average of the excess returns of maturities 2, 3, 4 and 5 years on all four factors

6Precisely, any Borel measurable function, i.e., any continuous function on a closed and bounded subset
of Rn.
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Figure 1: Deep Neural Network
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Figure 1 shows the general structure of the deep feed forward designed to obtain the DNN factor fDNN .
There are four groups of networks, each group for n ∈ {1, 2, 3, 4}. The inputs layer receives data from
Zy

t = {z1,t, z2,t, . . . ,zn,t}. Each group of network n outputs a factor (DNN factor), which we denote by

f
(n),h
t,DNN .
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derived from our deep neural network, as below:

1
4

∑5
n=2 rx

(n)
t+h/12 = τ0 + τ1f

(2),h
t,DNN + τ2f

(3),h
t,DNN + τ3f

(4),h
t,DNN + τ4f

(5),h
t,DNN + ε̄t+h/12

= τ>F̂
h

t + ε̄t+h/12

(19)

where F̂t and τ are 5×1 vectors given by F̂t ≡
[
1 f

(2),h
t,DNN f

(3),h
t,DNN f

(4),h
t,DNN f

(5),h
t,DNN

]>
, and

τ ≡ [τ0 τ1 τ2 τ3 τ4]>. The predictive regression in this approach is given by

rx
(n)
t+h/12 = β0 + β1

(
τ>F̂t

)h
t

+ εt+h/12 n = 2, 3, 4, 5 . (20)

Equation 20 tells us that a single factor
(
τ>F̂t

)h
t

defines the state variable driving the

excess returns. Thus, starting from the spanning hypothesis, we feed a MLP with the entire

information from the yield curve to approximate a function, and then derive a single linear

combination of factors to explain the time-varying expected returns across maturities.

From the deep neural network we also would like to estimate a factor that represent the

information not spanned by the term-structure. To do so, we design a new approach in which

at each t and each group n ∈ {2, 3, 4, 5} of network for each maturity, we orthogonalize the

excess returns by the deep neural network factor f
(n)
t,DNN , and denote it by ξ

(n),h
t as

ξ
(n),h
t+h/12 = rx

(n)
t+h/12 − β0 − β1f

(n),h
t,DNN . (21)

From equation (21), the factor ξ
(n),h
t+h/12that lies in an orthogonal vector to the space

spanned by f
(n)
t,DNN , can be seen as all the information not spanned by the term-structure

captured by f
(n)
t,DNN that affects the excess returns.

2.4 An Illustrative Term-Structure Model

In this section we make the link of our methodology with the main dynamic term-

structure frameworks in the macro-finance literature. We follow Duffee (2013) and assume

that interest rate dynamics are linear and homoskedastic with Gaussian shocks. The no-

arbitrage assumption rely on the fundamental asset pricing equation:

P
(n)
t = Et

(
Mt+1P

(n−1)
t+1

)
(22)

where P
(n)
t is the price of a bond and Mt+h/12 is the stochastic discount factor (SDF).

The economic agents value nominal bonds using the following SDF:

12



Mt+h/12 = exp−rt
1
2

Λ>t Λt−Λ>t εt+h/12 (23)

where Λt are the market prices of the risks, i.e., the amount of compensation required by

investors to face the unit normal shock εt+h/12. The yield on a one-period bond rt ≡ y(1) is

a function of Zt, as

rt = ρ0 + ρ1Zt . (24)

As we defined Zt =
{
Zy
t ,Z

y{

t

}
, we write the dynamics of Zt that capture all the risks of

the economy following a Gaussian VAR process given by:[
Zy
t

Zy{

t

]
= µ+ Φ

[
Zy
t−1

Zy{

t−1

]
+ Σεt

Zt = µ+ ΦZt−1 + Σεt εt ∼ N(0, I)

(25)

where µ is a a k × 1 vector, and Φ and Σ are k × k matrices, being k the number of

state variables. In a similar fashion to Joslin et al. (2014), who developed an arbitrage-free

dynamic term-structure model with unspanned macro risks, we can write:

Zy{

t = γ0 + γ1Z
y
t +MZy

t
Zy{

t (26)

where MZy
t
Zy{

t is the annihilator matrix of the space spanned by Zy
t , i.e., MZy

t
Zy{

t ≡
Zy{

t −Proj
[
Zy{

t |Z
y
t

]
. Previous models have assumed that the Zy{

t was spanned by Zy
t , thus

imposing the restriction of Zy{

t = Proj
[
Zy{

t |Z
y
t

]
in equation (26).

Aligned with Joslin et al. (2014), our methodology is also based on (i) a small number

of risk factors, and (ii) the unspanned components of Zy{

t may contain predictive power for

excess returns. However, we distinguish from Joslin et al. (2014) who provided the exact

macroeconomic variables that are unspanned by the term-structure. Our unspanned factor,

on the other hand, should be able to represent any other risk, be it macroeconomic or

sentiment-based in the economy. In this sense, we say that our framework is more general.

Additionally, to provide an intuitive interpretation, we analyze how Zy{

t is correlated with

macroeconomic variables and sentiment-based measures.

From the above illustrative term-structure model, we make a set of propositions that

makes the link between our deep-learning framework and a dynamic term structure model.

13



Proposition 1. The state vector Zt that encompasses all risks in the economy can be parti-

tioned as Zt =
{
Zy
t ,Z

y{

t

}
, in such a way that Zy

t contains information solely from the yield

curve, and Zy{

t any other information not found in the term structure.

Proposition 2. Under the canonical arbitrage-free Gaussian term structure model as in

Joslin et al. (2014), Zy
t is given by the derived factor

(
τ>F̂t

)h
t

from equation (19), and Zy{

t

by a linear function f (·) of ξht+h/12.

Proposition 3. As in the dynamic term structure model of Joslin et al. (2014), f(ξht+h/12)

complete and fill the unspanned factor in the state space, in a such a way that

[(
τ>F̂t

)h
t
, f(ξht+h/12)

]
and Zt represent linear rotations of the same economy-wide risks underlying all tradable as-

sets available to agents in the economy.

3 Data & Strategy

3.1 Data

As emphasized by Bauer and Hamilton (2018), predictive regressions estimated us-

ing overlapping observations, approach commonly used by several previous studies, where

monthly data is used and the annual excess bond return is the dependent variable, introduces

serial correlation in the prediction errors, what results in inaccurate standard errors.

As done in Gargano et al. (2019), to overcome the issues generated by overlapping obser-

vations, we reconstruct the yield curve at the daily frequency, using the parameters estimated

by Gürkaynak et al. (2007) and made available at the Federal Reserve Discussion Series web-

site7. Thus, we reconstruct the log yield of a zero-coupon with n-period maturity at time t

as

y
(n)
t = β0,t +β1,t

(
1−exp (−n/τ1)

n/τ1

)
+β2,t

(
1−exp (−n/τ1)

n/τ1
− exp (−n/τ1)

)
+β3,t

(
1−exp (−n/τ2)

n/τ2
− exp (−n/τ2)

) (27)

where the daily estimated parameters β0, β1, β2, β3, τ1 and τ2 are from Gürkaynak et al.

(2007). The full period of analysis ranges from 1962:01 to 2017:12. We use these estimated

parameters from the last day of each month to construct a monthly derived zero-coupon

bonds log yields with maturities up to 60 months from each t. Figure 2 plots the log yields

for all maturities. Figure 3 shows the 1-month excess returns for maturities with n = 2, 3, 4

7https://www.federalreserve.gov/econres/feds/2006.htm
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and 5 years. In Appendix A.1, figure 14 plots for the same set of maturities the 12-month

excess returns.

Figure 2: Derived zero-coupon bonds log yields for maturities (n) up to 60 months
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Figure 2 shows the log yields for all maturities we consider: y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t . At each month

t, there are 60 yields represented by variation of color. The log yields of the zero-coupons bonds are
reconstructed with equation (27), using the last day of each month estimated parameters from Gürkaynak
et al. (2007) data. The entire sample ranges from 1962:01 to 2018:12.

Some papers have instead used the data from the Fama–Bliss Center for Research in

Security Prices (CRSP) to build the series of log bond yields. Based on Fama and Bliss

(1987), this approach constructs the yields sequentially from a set of estimated daily forward

rates. As Gargano et al. (2019) point out, the differences between Fama and Bliss (1987)

and Gürkaynak et al. (2007) are minimal. The correlation between both methods8 when

comparing yields and excess returns are both above 0.99 for all four maturities we use.

3.2 Empirical Strategy

In our first analysis we establish the period of evaluation from 1993:01 to 2017:12. We

feed our deep neural network with three different sets of information from the term-structure:

(i) set of forward rates from 2 to 60 months from t, i.e., Zy
t =

{
f

(2/12)
t , f

(3/12)
t , . . . , f

(60/12)
t

}
,

(ii) set of zero-coupon yields with maturities ranging from 1 to 60 months from t, i.e.,

Zy
t =

{
y

(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
, and finally (iii) a combination of the previous two groups,

8For a similar period: 1962:01 to 2015:12.
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Figure 3: 1-Month Bonds Excess Returns
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Figure 3 shows the 1-month excess returns for maturities with n = 2, 3, 4 and 5 years. The excess returns

are calculeted as in equation (4), i.e., rx
(n)
t+1/12 = ny

(n)
t − (n+1/12)y

(n−h/12)
t+1/12 −ynt . Each panel represents one

of the four maturities. The y-axis shows values in percentage (%). NBER-classified recessions are shaded in
light red.
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i.e., Zy
t =

{
f

(2/12)
t , f

(3/12)
t , . . . , f

(60/12)
t , y

(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
.

Goodfellow et al. (2016) discuss that the design of the hidden units is an extremely

active area of research. This leads to many potential options for the nonlinear function in

the hidden layers. As the authors mention, the rectified linear activation function (ReLU) is

the default and recommended for use with the majority of feedforward neural networks. In

all our hidden layers, for all groups and architectures, we make use of this activation function

defined as

ReLU(x) =

0 , if x ≤ 0

x , otherwise .
(28)

As Goodfellow et al. (2016) mention, applying this function to the output of a linear

transformation yields a nonlinear transformation. Notice that, since ReLU units are nearly

linear, they have the advantage of also retaining many of the properties from linear models,

such as (i) efficiency to optimize with gradient-based methods, and (ii) ability to preserve

the properties that make linear models generalize well.

All our neural networks share the same architecture as show in figure 1. To make use

of the flexibility that MLP allows us, we designed three variation for the whole network.

Bianchi et al. (2019) also developed several designs in their study, and we use some of their

intuitions to design our deep neural networks architectures. The first (DNN 1) and second

model (DNN 2) are feedfoward neural networks with 2 hidden layers (L = 2), with 16 and

4 nodes respectively, and finally an output layer for each group of maturity n ∈ {1, 2, 3, 4}.
What differentiates DNN 1 from DNN 2 is the regularization function, where we use a

`1-norm for DNN 1 and a `1- and `2-norm for DNN 2. On the other hand, DNN 3 has 4

hidden layers (L = 4), with 64, 32, 16 and 4 nodes. For DNN 3 we use a `1- and `2-norm

regularization function.

The process of obtaining F̂
h

t from equation (19) at each t can be summarized in the

following way. First, for each set of Zy
t in consideration, we feed each one of the three DNNs

architectures with the entire past information of each variable in Zy
t . We use the 10% most

recent data in each zy
t ∈ Z

y
t for validation. After the set of weights are chosen, with the

final set of weights and the final approximated function, we use Zy
t−1 to predict rx

(n)
t in each

group of maturity n ∈ {2, 3, 4, 5}. Thus, we form the 4 × 1 vector of F̂
h

t as the factor at

t generated by each DNNi. As a final step we run univariate regressions to obtain ξht , as

shown in equation 21. Similarly, we build the 4× 1 vector using the observation t residuals

as ξ̂
h

t =
[
ξ̂

(2),h
t ξ̂

(3),h
t ξ̂

(4),h
t ξ̂

(5),h
t

]
. The whole process is summarized in the pseudocode

given in algorithm 1.
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Algorithm 1: Recursively generated factors with updated parameters
Initialization:

Start with a set of information from the term structure collected in Zy. Partitionate your

sample {t0, . . . , tsplit, τ, τ + 1, . . . , T} between the data to be used to initialize the process

{t0, . . . , tsplit}, and to obtain the recursively generated factors {τ, τ + 1, . . . , T};
Define the deep neural network architecture to be used (number of hidden layers L, and

number of nodes in each layer l ∈ L);

For a pre-defined deep neural network architecture DNNi, set the activation function φ (·)
in each node at layer l ∈ L as the ReLu defined in equation (28);

for n ∈ {2, 3, 4, 5} do
for t ∈ {τ, τ + 1, . . . , T} do

Feed DNNi with lagged data Zy
t−1 =

{
zy
t0
, zy

t0+1, . . . ,z
y
t−1

}
to learn/aproximate

with output rx
(n)
t , and use the last 10% of the data for validation;

Obtain the learned parameters;

f̂
(n),h
t,DNN ← g

(
Zy
t−1,θt−1

)
Obtain the t-th element that lies in the orthogonal vector from the space generated

by the f
(n),h
t−1,DNN through:

ξ̂
(n),h
t ← rx

(n)
t − β̂0 − β̂1f

(n),h
t−1,DNNi

end

end

Result:

F̂t,DNNi
≡


f̂
(2),h

t,DNNi

f̂
(3),h

t,DNNi

f̂
(4),h

t,DNNi

f̂
(5),h

t,DNNi

 =


f̂
(2),h
τ,DNNi

f̂
(3),h
τ,DNNi

f̂
(4),h
τ,DNNi

f̂
(5),h
τ,DNNi

f̂
(2),h
τ+1,DNNi

f̂
(3),h
τ+1,DNNi

f̂
(4),h
τ+1,DNNi

f̂
(5),h
τ+1,DNNi

...
...

...
...

f̂
(2),h
T,DNNi

f̂
(3),h
T,DNNi

f̂
(4),h
T,DNNi

f̂
(5),h
T,DNNi


And,

ξ̂
h

t ≡


ξ̂

(2),h
τ,DNNi

ξ̂
(3),h
τ,DNNi

ξ̂
(4),h
τ,DNNi

ξ̂
(5),h
τ,DNNi

ξ̂
(2),h
τ+1,DNNi

ξ̂
(3),h
τ+1,DNNi

ξ̂
(4),h
τ+1,DNNi

ξ̂
(5),h
τ+1,DNNi

...
... vdots

...

ξ̂
(2),h
T,DNNi

ξ̂
(3),h
T,DNNi

ξ̂
(4),h
T,DNNi

ξ̂
(5),h
T,DNNi


Notes: For our analysis the derived factors are calculated for the period τ=1993:01 to T=2017:12, while the

data ranging from t0 =1962:01 to tsplit =1992:12 is used as a burn-in data to initiate the recursive process

of obtaining the the derived factors f̂
(n),h
t,DNN and ξ̂

(n),h
t .
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At the end of our period of analysis, we use the entire series of F̂
h

t to obtain our single

factor
(
τ>F̂t

)h
t

that spans the yield curve information as in equation (19). To complete

the factor space of our dynamic term-structure model, we define the unspanned factor as a

function of ξht to build a single factor as well for Zy{

t . We investigate two alternatives for

f(ξht ). In the first one,
(
κ>ξ̂

)h
t

is the unique factor obtained as the projection of rxt+h/12 in

ξ̂t. The second alternative is a similar projection, however for each maturity n ∈ {2, 3, 4, 5}
we regress rx

(n)
t+h/12 on ξ̂

(−n),h

t ≡ ξ̂
h

t \ ξ̂
(n),h
t , i.e., on the set ξht excluding its own ξ̂

(n)
t . We

denote the factors generated by this second approach as
(
κ>ξ̂

)(−n),h

t
.

Consistent with our adapted dynamic term-structure model, the orthogonal vector from

Proj
[
f(ξ

(n)
t )|Zy

t

]
has predictive power for excess returns. Thus, we use the projection error

M τ>F̂(κ>ξ̂)ht for alternative 1 and M τ>F̂

(
κ>ξ̂

)(−n),h

t
for alternative 2 in our predictive

analysis in the following section.

The intuition that motivates our construction of Zy{

t lies in the fact that at each t,

ξ̂
(n)
t is orthogonal to f

(n),h
t,DNN , allowing the interpretation that, for each maturity group n

in our DNN, anything not captured by the neural network process of approximating g(·)
from the yield curve information Zy

t , are unspanned and should be in an orthogonal space.

Hence, the unspanned information in ξ̂
h

t could be capturing macroeconomic information or

sentiment measures not spanned by the term-structure information that affects the bonds’

excess returns. Alternative 1 builds an unique factor for Zy{

t in a such a way that a single

linear combination of orthogonal variables is the state variable that completes the state space

for time-varying expected returns on all maturities. On the other hand, alternative 2 tells us

that a single linear combination of three orthogonal variables from the remaining maturities

complete the state space for time-varying expected returns for maturity n.

4 Empirical Results

For the period 1993:01 to 2017:12, we generated f
(n),h
t,DNN in a recursive way. Figure 4

shows the derived DNN factor for each scenario under consideration. Each column uses a

different set of information from the term-structure to derive the factor f
(n),h
t,DNN . Column

(1) shows the the derived DNN factors when we feed the MLP with all the forward rates,

i.e., Zy
t =

{
f

(2/12)
t , f

(3/12)
t , . . . , f

(60/12)
t

}
, column (2) when the set of yields is used, i.e.,

Zy
t =

{
y

(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
and column (3) when both previous sets are combined,

i.e., Zy
t =

{
f

(2/12)
t , f

(3/12)
t , . . . , f

(60)
t , y

(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
. Each row represents one of

the four groups of maturities. Finally, different colors represent the three variations of DNN
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as explained in section 3.2. A quick inspection in figure 4 shows how the different structures

of neural networks result in different factors. Clearly, DNN 3 distinguishes from the other

two. We also see that DNN 1 and DNN 2 have an evident mean reverting tendency.

In order to better investigate how the factors f
(n),h
t,DNN behave, we plot in figure 5 only for

the DNN 2 factors generated by the set of yields in terms of maturity for the period of

analysis (1993:01 - 2017:12). Some patterns become evident when we inspect this figure.

First, on average the set
{
f
(2),h
t,DNN , f

(3),h
t,DNN , f

(4),h
t,DNN , f

(5),h
t,DNN

}
throughout the period of analysis,

we notice that it behaves as an increasing function of the maturity (n). In the first months

we see that the DNN factors behave quite erratically, what could be interpreted as the neural

network changing the weights in its functions more intensively to try to improve the learning

process. Another clear pattern inferred from figure 5 is that the curve generated at each

t apparently moves in synchrony across maturities. This is more evident when we take in

consideration the two recessions (2001:04 - 2001:11 and 2008:01 - 2009:06) in the period of

analysis. We see that the curve of generated factors move down for all maturities following

a recession and for some time after it the values of f
(n),h
t,DNN are low. As the recession fades,

the curve f
(n),h
t,DNN slowly start to move up as well.

Following our methodology, we use equation (19) to obtain our single factor
(
τ>F̂t

)h
t

as

a linear combination of the derived factors f
(n),h
t,DNN . Figure 6 plots

(
τ>F̂t

)h
t

for each DNN

architecture and the three different sets of Zy
t , our unique factor from the state space in the

dynamic term-structure model that captures all the information from the yield curve. Notice

that, based on which DNN structure we use, the factor
(
τ>F̂t

)h
t

behaves quite differently.

In the first years of analysis, the single factor seems to be correlated. However, consistent

with our comments from figure 4, as the training process of the neural network advances,

the three DNNs produce distincts
(
τ>F̂t

)h
t
, being more evident the contrast of the factor

produced by DNN 3, since the its structure is the most different one.

4.1 Predictive Regressions

In table 1 we have the predictive regressions for the period from 1993:01 to 2017:12

using our derived state variables:
(
τ>F̂t

)h
t

and
(
κ>ξ̂

)h
t

(alternative 1) or
(
κ>ξ̂

)(−n),h

t
(alternative 2). We split the regressions in 4 panels, one for each maturity. We evaluate

three different predictive regression models. The first one is shown in equation (20), where

we only use
(
τ>F̂t

)h
t

as the state variable. In our model, to complete the state space, we use

the orthogonal vector from the projection of f(ξ
(n)
t+h/12) on

(
τ>F̂t

)h
t
. The two alternatives

for the single factor that captures the unspanned information from the yield curve are the
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Figure 4: DNN Factor f
(n),h
t,DNN by MLP Architecture and Choice of Zy

t
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Figure 4 shows the derived f
(n),h
t,DNN for each scenario under consideration. Each column uses a different set

of information from the term-structure to derive the factor f
(n),h
t,DNN . Column (1) shows the the derived DNN

factors for Zy
t =

{
f
(2/12)
t , f

(3/12)
t , . . . , f

(60)
t

}
, column (2) for Zy

t =
{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
and column

(3) for Zy
t =

{
f
(2/12)
t , f

(3/12)
t , . . . , f

(60/12)
t , y

(1)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
. Each row represents one of the four

groups of maturities. Finally, different colors represent the three variations of DNN considered, as explained
in section 3.2. The derived factors are calculated for the period 1993:01 to 2017:12, where we use the data
from 1962:01 to 1992:12 as a burn-in data to initiate the recursive process of obtaining the the derived factors

f
(n),h
t,DNN .
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Figure 5: Derived Factors f
(n),h
t,DNN for DNN 2 Generated Using the Set of Yields

Figure 5 shows a 3D representation of f
(n),h
t,DNN generated by the MLP architecture DNN 2 using the set

of yields Zy
t =

{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
in terms of maturity for the period of analysis. DNN 2 is a

feedfoward neural networks architecture with 2 hidden layers (L = 2), with 16 and 4 nodes respectively, and
an output layer for each group of maturity n ∈ {1, 2, 3, 4}. Period of analysis ranges from 1993:01 to 2017:12.
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Figure 6: Single Factor
(
τ>F̂t

)h
t

Series by DNN Architecture and Choice of Zy
t

Z: set of yields and forward rates

Z: set of yields

Z: set of forward rates
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Figure 6 shows
(
τ>F̂t

)h
t

for each DNN architecture and the three different sets of Zy
t . The first panel plots(

τ>F̂t

)h
t

when Zy
t =

{
f
(2/12)
t , f

(3/12)
t , . . . , f

(60)
t

}
is used to obtain

(
τ>F̂t

)h
t

from the DNN derived factors

f
(n),h
t,DNN . The panel in the center plots the single factor when Zy

t =
{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
is used.

Finally, the third panel plots
(
τ>F̂t

)h
t

when Zy
t =

{
f
(2/12)
t , f

(3/12)
t , . . . , f

(60/12)
t , y

(1)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
is used. Different colors represent the three variations of DNN considered, as explained in section 3.2. The
derived factors are calculated for the period 1993:01 to 2017:12, where we use the data from 1962:01 to
1992:12 as a burn-in data to initiate the recursive process.
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following two regression models. In each panel, we show the these three regressions depending

on wich DNN architecture was used to build the single state factor
(
τ>F̂t

)h
t
.

From table 1 we see that for 1-month holding period, with no overlapping returns to affect

the robustness of our tests, our state variable
(
τ>F̂t

)h
t
, when used as the only predictor,

is always statistically significant for DNN 1 and DNN 2. For DNN 3, the single factor

loses statistically significance when the maturity increases. More importantly, the adjusted

R2 ranges for maturity of 2 years, for maturity of 2 years, for maturity of 2 years, and for

maturity of 5 years. When we add the second state variable that captures the unspanned

factors, we keep seeing statistically significance for the same cases, and the adjusted R2 raises

quite substantially, either for alternative 1
(
κ>ξ̂

)h
t
, or alternative 2

(
κ>ξ̂

)(−n),h

t
.

As we discussed above, for each DNN architecture and each set of Z used, we ob-

tained a state factor
(
τ>F̂t

)h
t

for the time varying of the expected returns across all

maturities. Out of the 9 different specifications for this single factor, we will focus only

on the one formed using the f
(n),h
t,DNN from the DNN 2 fed with the entire set of yields

Zy
t =

{
y

(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
. We do so motivated by two reasons. First, because as

shown in Gu et al. (2018), higher complexity with a much ”deeper” network it is not neces-

sary associated with better out-of-sample results. And second, because this pair of choices

result in smaller MSE in our period of analysis.

Table 2 presents the correlation between our state variables, i.e.,
(
τ>F̂t

)h
t
,
(
κ>ξ̂

)h
t

and(
κ>ξ̂

)(−n),h

t
, as well as with the Cochrane-Piazzesi and Ludvingson-Ng factors calculated as

explained in section 2.2. By definition the correlation between our factor that summarizes

the information from the term-structure and the alternatives for the one(s) that complete

the state space is 0, which we can see in table 2. Now the correlation between our factors

for the unspanned information from the yield curve are always high, ranging from .84 to .99.

We see that the correlation between
(
κ>ξ̂

)h
t

and the factor for low maturities, especially

n = 2, is high (.99). For the remaining one, we notice that the correlation decays.
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Table 1: Predictive Regressions Using
(
τ>F̂t

)h
t
,
(
κ>ξ̂

)h
t

and
(
κ>ξ̂

)(−n),h

t
as State Variables

Panel A: rx
(2)
t+h/12

DNN 1 DNN 2 DNN 3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(τ>F̂)ht 0.810∗∗∗ 0.810∗∗∗ 0.810∗∗∗ 0.811∗∗∗ 0.811∗∗∗ 0.811∗∗∗ 1.419∗∗∗ 1.419∗∗∗ 1.419∗∗∗

(0.160) (0.149) (0.147) (0.131) (0.119) (0.119) (0.414) (0.377) (0.356)

M
τ>F̂

(κ>ξ̂)(−2),ht 0.760∗∗∗ 0.779∗∗∗ 0.875∗∗∗

(0.204) (0.180) (0.211)

M
τ>F̂

(κ>ξ̂)ht 0.591∗∗∗ 0.525∗∗∗ 0.679∗∗∗

(0.139) (0.126) (0.138)
Constant −0.010 −0.010 −0.010 −0.010 −0.010 −0.010 −0.189∗ −0.189∗ −0.189∗∗

(0.054) (0.050) (0.049) (0.039) (0.035) (0.035) (0.110) (0.101) (0.094)

Observations 300 300 300 300 300 300 300 300 300

Adjusted R2 0.100 0.148 0.159 0.119 0.178 0.175 0.046 0.105 0.124

Panel B: rx
(3)
t+h/12

(τ>F̂)ht 0.959∗∗∗ 0.959∗∗∗ 0.959∗∗∗ 0.943∗∗∗ 0.943∗∗∗ 0.943∗∗∗ 1.175∗ 1.175∗∗ 1.175∗∗

(0.248) (0.234) (0.233) (0.199) (0.188) (0.184) (0.630) (0.566) (0.559)

M
τ>F̂

(κ>ξ̂)(−3),h
t+h/12

0.799∗∗∗ 0.789∗∗∗ 0.984∗∗∗

(0.234) (0.219) (0.236)

M
τ>F̂

(κ>ξ̂)h
t+h/12

0.765∗∗∗ 0.757∗∗∗ 0.929∗∗∗

(0.225) (0.205) (0.224)
Constant −0.008 −0.008 −0.008 −0.003 −0.003 −0.003 −0.072 −0.072 −0.072

(0.087) (0.082) (0.082) (0.063) (0.060) (0.059) (0.169) (0.153) (0.150)

Observations 300 300 300 300 300 300 300 300 300

Adjusted R2 0.055 0.092 0.093 0.063 0.100 0.109 0.010 0.067 0.067

(Continued)
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Table 1: Predictive Regressions Using
(
τ>F̂t

)h
t
,
(
κ>ξ̂

)h
t

and
(
κ>ξ̂

)(−n),h

t
as State Variables (Continued)

Panel C: rx
(4)
t+h/12

(τ>F̂)ht 1.073∗∗∗ 1.073∗∗∗ 1.073∗∗∗ 1.065∗∗∗ 1.065∗∗∗ 1.065∗∗∗ 0.864 0.864 0.864
(0.334) (0.320) (0.317) (0.264) (0.253) (0.248) (0.835) (0.759) (0.755)

M
τ>F̂

(κ>ξ̂)(−4),ht 0.795∗∗∗ 0.807∗∗∗ 1.038∗∗∗

(0.291) (0.288) (0.289)

M
τ>F̂

(κ>ξ̂)ht 0.902∗∗∗ 0.945∗∗∗ 1.144∗∗∗

(0.312) (0.284) (0.313)
Constant 0.002 0.002 0.002 0.004 0.004 0.004 0.063 0.063 0.063

(0.120) (0.116) (0.115) (0.088) (0.086) (0.085) (0.228) (0.209) (0.207)

Observations 300 300 300 300 300 300 300 300 300

Adjusted R2 0.036 0.060 0.063 0.042 0.069 0.080 0.001 0.046 0.046

Panel D: rx
(5)
t+h/12

(τ>F̂)ht 1.158∗∗∗ 1.158∗∗∗ 1.158∗∗∗ 1.181∗∗∗ 1.181∗∗∗ 1.181∗∗∗ 0.542 0.542 0.542
(0.415) (0.395) (0.398) (0.325) (0.312) (0.309) (1.025) (0.949) (0.939)

M
τ>F̂

(κ>ξ̂)(−5),ht 0.854∗∗ 0.848∗∗∗ 1.069∗∗∗

(0.336) (0.318) (0.339)

M
τ>F̂

(κ>ξ̂)ht 1.000∗∗ 1.081∗∗∗ 1.322∗∗∗

(0.398) (0.363) (0.404)
Constant 0.017 0.017 0.017 0.010 0.010 0.010 0.198 0.198 0.198

(0.152) (0.146) (0.147) (0.114) (0.111) (0.111) (0.284) (0.267) (0.263)

Observations 300 300 300 300 300 300 300 300 300

Adjusted R2 0.025 0.049 0.046 0.032 0.060 0.062 -0.002 0.033 0.036

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1 reports the predictive regressions using
(
τ>F̂t

)h
t
,
(
κ>ξ̂

)h
t

and
(
κ>ξ̂

)(−n),h
t

as state variables for 1-month holding period (h = 1). Panel

A reports the predictive regressions for maturity n = 2 years. Panel B reports the predictive regressions for maturity n = 3 years. Panel C reports

the predictive regressions for maturity n = 4 years. Panel D reports the predictive regressions for maturity n = 5 years. The state factor
(
τ>F̂t

)h
t

reported in this table used only the set of yields Zy
t =

{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
to feed the MLP. We use Newey-West robust standard errors.

Sample ranges from 1993 : 01 to 2017 : 12.
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Table 2: Correlation Matrix

(τ>F̂)ht M τ>F̂(κ>ξ̂)ht M τ>F̂(κ>ξ̂)
(−2),h
t M τ>F̂(κ>ξ̂)

(−3),h
t M τ>F̂(κ>ξ̂)

(−4),h
t M τ>F̂(κ>ξ̂)

(−5),h
t ĈP

h

t L̂N
h

t

(τ>F̂)ht 1 0 0 0 0 0 0.556 -0.059

M τ>F̂(κ>ξ̂)ht 0 1 0.995 0.912 0.904 0.919 0.129 0.171

M τ>F̂(κ>ξ̂)
(−2),h
t 0 0.995 1 0.938 0.900 0.888 0.135 0.174

M τ>F̂(κ>ξ̂)
(−3),h
t 0 0.912 0.938 1 0.947 0.849 0.170 0.203

M τ>F̂(κ>ξ̂)
(−4),h
t 0 0.904 0.900 0.947 1 0.959 0.173 0.204

M τ>F̂(κ>ξ̂)
(−5),h
t 0 0.919 0.888 0.849 0.959 1 0.146 0.178

ĈP
h

t 0.556 0.129 0.135 0.170 0.173 0.146 1 -0.007

L̂N
h

t -0.059 0.171 0.174 0.203 0.204 0.178 -0.007 1

Table 2 reports the correlation between our single factor
(
τ>F̂t

)h
t
, with the factors that complete the state

space in our dynamic term-structure model. The first alternative is
(
κ>ξ̂

)h
t
, which is the unique factor

obtained as the projection of rxt+h/12 in ξ̂t+h/12. The second alternative is a similar projection, however for

each maturity n ∈ {2, 3, 4, 5} we regress rx
(n)
t+h/12 on ξ̂

(−n),h
t+h/12 ≡ ξ̂

h

t+h/12 \ ξ̂
(n),h
t+h/12. We use orthogonal vector

from the projection of each one of them on
(
τ>F̂t

)h
t

to complete our state space. The table also reports

the correlation with the Cochrane-Piazzesi and Ludvingson-Ng factors calculated as explained in section 2.2.
The period of analysis ranges from 1993 : 01 to 2017 : 12.

4.2 Comparison with Other Factors from the Literature

In this section, we are interested in evaluating how our derived and theoretically mo-

tivated factors compare with the other factors and frameworks that were proposed in the

literature to explain the time-varying expected excess returns. Figure 7 shows in two sepa-

rated panels our single factor that spans the information from the term-structure,
(
τ>F̂t

)h
t
,

as well as the factor with the spanned risks from alternative 1,
(
κ>ξ̂

)h
t
, along with the

Cochrane-Piazzesi and Ludvingson-Ng factors. Aligned with the correlation in table 2, we

see that our factor has some positive correlation (.56) with the Cochrane-Piazzesi factor.

However, this correlation is not strong enough to claim that both are capturing the same

information. We must say that this should be an expected result, given that both factors

capture information from the term-structure.

On the other hand,
(
τ>F̂t

)h
t

seems to be uncorrelated (−.06) with the Ludvingson-

Ng factor. Now, the time series in figure 7 with the correlation shows us an interesting

result. Consistent with our framework, the unspanned risks from the term-structure should

be captured by our orthogonal factor
(
κ>ξ̂

)h
t
, or

(
κ>ξ̂

)(−n),h

t
. Given that Ludvingson-Ng

factor is solely based in macroeconomic variables information, we see that the correlation of

L̂N
h

t with our unspanned risks factors ranges from .17 to .20. This could be understood as

the risk factors not spanned by the yield-curve, that are captured by our orthogonal state
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Figure 7: Time Series of our Derived Factors
(
τ>F̂t

)h
t

and
(
κ>ξ̂

)h
t
, along with ĈP

h

t and

L̂N
h

t
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Figure 7 plots in two separated panels our single factor that spans the information from the term-structure,

as well as the factor with the spanned risks (alternative 1). The graph in the top plots
(
τ>F̂t

)h
t

along with

the Cochrane-Piazzesi and Ludvingson-Ng factors. The bottom graph plots
(
κ>ξ̂

)h
t

along with the same

factors. The period of analysis ranges from 1993 : 01 to 2017 : 12.
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Table 3: Predictive Regressions with
(
τ>F̂t

)h
t

and
(
κ>ξ̂

)(−n),h

t
, along with the Cochrane-

Piazzesi and Ludvingson-Ng factors, and Fama-Bliss Regressions with Forward Spreads

Panel A: rx
(2)
t+h/12

(1) (2) (3) (4) (5) (6) (7) (8)

(τ>F̂)ht 0.847∗∗∗ 0.842∗∗∗ 0.853∗∗∗ 0.824∗∗∗ 0.525∗∗∗ 0.582∗∗∗ 0.582∗∗∗ 0.614∗∗∗

(0.124) (0.115) (0.128) (0.117) (0.154) (0.140) (0.145) (0.135)

M
τ>F̂

(κ>ξ̂)(−2),ht 0.658∗∗∗ 0.745∗∗∗ 0.704∗∗∗ 0.558∗∗∗

(0.172) (0.182) (0.182) (0.185)

L̂N
h
t 0.617∗∗∗ 0.529∗∗∗ 0.559∗∗∗ 0.518∗∗∗

(0.127) (0.120) (0.110) (0.110)

fs
(n,h)
t −0.746 −0.225 −0.570 −0.172

(0.476) (0.438) (0.437) (0.429)

ĈP
h
t 0.454∗∗∗ 0.364∗∗∗ 0.465∗∗∗ 0.375∗∗∗

(0.126) (0.112) (0.112) (0.109)
Constant −0.013 −0.012 0.031 0.002 −0.060 −0.050 −0.031 −0.044

(0.037) (0.034) (0.051) (0.047) (0.039) (0.036) (0.045) (0.043)

Observations 300 300 300 300 300 300 300 300

Adjusted R2 0.183 0.223 0.128 0.177 0.150 0.197 0.215 0.240

Panel B: rx
(3)
t+h/12

(1) (2) (3) (4) (5) (6) (7) (8)

(τ>F̂)ht 0.996∗∗∗ 0.989∗∗∗ 0.940∗∗∗ 0.947∗∗∗ 0.559∗∗ 0.648∗∗∗ 0.626∗∗∗ 0.719∗∗∗

(0.190) (0.184) (0.199) (0.188) (0.245) (0.234) (0.238) (0.237)

M
τ>F̂

(κ>ξ̂)(−3),ht 0.620∗∗∗ 0.852∗∗∗ 0.692∗∗∗ 0.585∗∗

(0.209) (0.228) (0.226) (0.237)

L̂N
h
t 0.921∗∗∗ 0.800∗∗∗ 0.900∗∗∗ 0.823∗∗∗

(0.209) (0.201) (0.194) (0.191)

fs
(n,h)
t −0.215 0.410 −0.053 0.394

(0.554) (0.532) (0.525) (0.542)

ĈP
h
t 0.608∗∗∗ 0.467∗∗ 0.583∗∗∗ 0.437∗∗

(0.205) (0.195) (0.188) (0.198)
Constant −0.007 −0.006 0.021 −0.049 −0.070 −0.054 −0.064 −0.098

(0.060) (0.059) (0.091) (0.087) (0.063) (0.061) (0.082) (0.082)

Observations 300 300 300 300 300 300 300 300

Adjusted R2 0.120 0.141 0.060 0.099 0.084 0.111 0.136 0.151

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3 reports the predictive regressions using
(
τ>F̂t

)h
t

and
(
κ>ξ̂

)(−n),h
t

, along with ĈP
h

t , L̂N
h

t and

the Fama-Bliss regressions with forward spreads for 1-month holding period (h = 1). Panel A re-
ports the predictive regressions for maturity n = 2 years. Panel B reports the predictive regressions

for maturity n = 3 years. The state factor
(
τ>F̂t

)h
t

reported in this table used only the set of yields

Zy
t =

{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
to feed the MLP. We use Newey-West robust standard errors. Sample

ranges from 1993 : 01 to 2017 : 12.
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Table 4: (Continued) Predictive Regressions with
(
τ>F̂t

)h
t

and
(
κ>ξ̂

)(−n),h

t
, along with

the Cochrane-Piazzesi and Ludvingson-Ng factors, and Fama-Bliss Forward Spreads

Panel C: rx
(4)
t+h/12

(1) (2) (3) (4) (5) (6) (7) (8)

(τ>F̂)ht 1.135∗∗∗ 1.127∗∗∗ 1.082∗∗∗ 1.108∗∗∗ 0.547 0.651∗∗ 0.685∗∗ 0.790∗∗

(0.254) (0.247) (0.270) (0.257) (0.335) (0.323) (0.329) (0.329)

M
τ>F̂

(κ>ξ̂)(−4),ht 0.609∗∗ 0.872∗∗∗ 0.688∗∗ 0.555∗∗

(0.262) (0.289) (0.291) (0.274)

L̂N
h
t 1.218∗∗∗ 1.079∗∗∗ 1.222∗∗∗ 1.118∗∗∗

(0.307) (0.287) (0.285) (0.273)

fs
(n,h)
t 0.260 0.665 0.386 0.655

(0.622) (0.595) (0.593) (0.587)

ĈP
h
t 0.822∗∗∗ 0.657∗∗ 0.755∗∗∗ 0.606∗∗

(0.290) (0.276) (0.265) (0.272)
Constant −0.0003 0.0002 −0.038 −0.103 −0.085 −0.068 −0.144 −0.171

(0.085) (0.084) (0.130) (0.124) (0.089) (0.087) (0.121) (0.118)

Observations 300 300 300 300 300 300 300 300

Adjusted R2 0.095 0.108 0.039 0.070 0.063 0.081 0.112 0.122

Panel D: rx
(5)
t+h/12

(1) (2) (3) (4) (5) (6) (7) (8)

(τ>F̂)ht 1.268∗∗∗ 1.258∗∗∗ 1.247∗∗∗ 1.263∗∗∗ 0.511 0.626 0.736∗ 0.834∗∗

(0.315) (0.305) (0.334) (0.318) (0.422) (0.401) (0.409) (0.400)

M
τ>F̂

(κ>ξ̂)(−5),ht 0.673∗∗ 0.872∗∗∗ 0.738∗∗ 0.590∗∗

(0.281) (0.312) (0.315) (0.279)

L̂N
h
t 1.501∗∗∗ 1.337∗∗∗ 1.518∗∗∗ 1.386∗∗∗

(0.421) (0.381) (0.387) (0.360)

fs
(n,h)
t 0.633 0.789 0.739 0.848

(0.698) (0.656) (0.658) (0.632)

ĈP
h
t 1.064∗∗∗ 0.882∗∗ 0.967∗∗∗ 0.818∗∗

(0.380) (0.352) (0.343) (0.337)
Constant 0.005 0.005 −0.116 −0.147 −0.106 −0.086 −0.248 −0.253∗

(0.111) (0.109) (0.166) (0.158) (0.117) (0.115) (0.158) (0.152)

Observations 300 300 300 300 300 300 300 300

Adjusted R2 0.082 0.098 0.031 0.062 0.054 0.074 0.103 0.114

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4 reports the predictive regressions using
(
τ>F̂t

)h
t

and
(
κ>ξ̂

)(−n),h
t

, along with ĈP
h

t , L̂N
h

t and

the Fama-Bliss regressions with forward spreads for 1-month holding period (h = 1). Panel C re-
ports the predictive regressions for maturity n = 4 years. Panel D reports the predictive regressions

for maturity n = 5 years. The state factor
(
τ>F̂t

)h
t

reported in this table used only the set of yields

Zy
t =

{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
to feed the MLP. We use Newey-West robust standard errors. Sample

ranges from 1993 : 01 to 2017 : 12.
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variable and Ludvingson-Ng approach.

Next, we run predictive regressions using our factors with the main factors proposed in

the literature. Tables 3 and 4 reports the predictive regressions using
(
τ>F̂t

)h
t
,
(
κ>ξ̂

)h
t

and(
κ>ξ̂

)(−n),h

t
, along with ĈP

h

t , L̂N
h

t and the Fama-Bliss regressions with forward spreads for

1-month holding period (h = 1). For each maturity (in each one of the four panels), there

are 8 different regressions specifications. In pairs, we run predictive regressions first only

with our state variable that spans the term-structure along with a proposed factor from the

literature. Then, we add our state variable of the unspanned risks.

The results, consistent with table 1, shows that our state variables are still significant

when adding either CP LN or forward spreads especially for maturities n = 2 and n = 3.

Interestingly, the forward spreads loose statistical significance. In column (8) we see that

our factors remain significant if we still add all factors, including ĈP
h

t , L̂N
h

t and the forward

spreads. As already mentioned, nonetheless, for higher maturities our factors loose some

statistical significance.

4.3 Economic Interpretation

Some natural questions may arise at this stage. What are the economic interpretation of

these factors derived from a deep neural network? How are they linked with the macroeco-

nomic variables? What macroeconomic and possibly other risk measures do they capture? In

order to answer these questions, we make use of the the FRED-MD dataset (McCracken and

Ng, 2016), which is a large macroeconomic database and monthly updated by the FRED9

that shares the predictive content of a widespread dataset known in the literature as Stock-

Watson (Stock and Watson (1996)). It is a balanced panel consisting of 128 macroeconomic

and financial variables. The variables are split in 8 groups: (1) output and income, (2) labor

market, (3) housing, (4) consumption, orders, and inventories, (5) money and credit, (6)

interest and exchange rates, (7) prices, and (8) stock market. In Appendix A.1, table 11 list

all the variables, codes and their groups.

In a similar fashion to Ludvigson and Ng (2009), we find the marginal R2 of our fac-

tors
(
τ>F̂t

)h
t
, M τ>F̂(κ>ξ̂)

(−n),h
t+h/12 and M τ>F̂(κ>ξ̂)ht+h/12. The marginal R2 simply is the

goodness-of-fit of the regression of each one the 128 variables from the FRED-MD on our

state variables. Figure 8 reports the marginal R2 as bar charts using colors to split the 8

groups. A quick inspection in this figure reveals that
(
τ>F̂t

)h
t

has a high R2 with many

macroeconomic variables. However, this is not evenly distributed within and across groups.

We can see that especially the groups (7) prices and (5) money and credit have R2 above or

9https://research.stlouisfed.org/econ/mccracken/fred-databases/
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Figure 8: Marginal R2 of the factors
(
τ>F̂t

)h
t

and M τ>F̂(κ>ξ̂)ht+h/12
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Group 3: Housing
Group 4: Consumption, orders, and inventories

Group 5: Money and credit
Group 6: Interest and exchange rates

Group 7: Prices
Group 8: Stock market

MτTF(κTξ)t
h

Figure 8 reports the marginal R2 of the factor
(
τ>F̂t

)h
t

in the top panel, and Mτ>F̂
(κ>ξ̂)ht+h/12 in the

bottom panel. The marginal R2 is obtained with the regression of each one the 128 variables from the

FRED-MD on
(
τ>F̂t

)h
t

or Mτ>F̂
(κ>ξ̂)ht+h/12. Sample ranges from 1993 : 01 to 2017 : 12.
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Figure 9: Marginal R2 of the factors M τ>F̂(κ>ξ̂)
(−n),h
t+h/12
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Figure 9 reports the marginal R2 of the factors Mτ>F̂
(κ>ξ̂)

(−n),h
t+h/12 by maturity. The marginal R2 is obtained

with the regression of each one the 128 variables from the FRED-MD on Mτ>F̂
(κ>ξ̂)

(−n),h
t+h/12. Sample ranges

from 1993 : 01 to 2017 : 12.
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Figure 10: Marginal R2 Using Sentiment-Based Measures
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Figure 10 reports the marginal R2 obtained from sentiment-based measures. It is obtained with the regression
of each one these indexes on our state variables. For comparison, we also report for the Cochrane-Piazzesi

and Ludvingson-Ng factors. Row (I), panel (a) shows the marginal R2 for ĈP
h

t , and panel (b) plots for

L̂N
h

t . Row (II) panel (a) plots for our spanning factor
(
τ>F̂t

)h
t
, and panel (b) for the unspanned factor

Mτ>F̂
(κ>ξ̂)ht+h/12. Rows (III) and (IV) plots for the other derived unspanned state variables: in panel (III-

a) we have Mτ>F̂
(κ>ξ̂)

(−2),h
t+h/12, panel (III-b) plots Mτ>F̂

(κ>ξ̂)
(−3),h
t+h/12, panel (IV-a) shows the marginal R2

for Mτ>F̂
(κ>ξ̂)

(−4),h
t+h/12, and panel (IV-b) for Mτ>F̂

(κ>ξ̂)
(−5),h
t+h/12. Sample ranges from 1993 : 01 to 2017 : 12.
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around .40 for most of their variables. Even though the groups (6) interest and exchange rates

and (2) labor market have some variables with high R2, there are many others within the

group that do not. Thus, apparently, the state variable spanning the yield curve loads more

in monetary variables movements, what should be expected. Nonetheless, it also captures a

wide range of macroeconomic variables.

An interesting pattern stands out when we calculate the marginal R2 with our unspanned

factor from the term-structure. The graph in the bottom of figure 8 shows the marginal R2

for
(
κ>ξ̂

)h
t
, while figure 9 shows for each

(
κ>ξ̂

)(−n),h

t
in different panels. It is clear that

our state variable of the unspanned risks capture important information left out by the

spanning factor. We see that especially some variables from the group (6) interest and

exchange rates stand out. This pattern is consistent either for
(
κ>ξ̂

)h
t
, or the four factors(

κ>ξ̂
)(−n),h

t
. Among these variables that have a high R2 with our unspanned factor, there are

relevant variables, such as 6-Month Treasury C Minus FEDFUNDS (TB6SMFFM), 1-Year

Treasury C Minus FEDFUNDS (T1YFFM) and 3-Month Treasury C Minus FEDFUNDS

(TB3SMFFM).

Next, we evaluate if our factors capture any sentiment information. To do so, we make

use of several indexes recently proposed in the literature that seek to estimate the state of the

sentiment in the economy. The first one is the economic policy uncertainty measure (EPU)

from Baker et al. (2016). The EPU is an index that proxies for movements in policy-related

economic uncertainty for U.S., being based on newspaper coverage frequency. The authors

also calculated a categorical EPU, which is derived using results from the Access World

News database of over 2,000 US newspapers, in such a way that each one of the sub-indexes

requires the economic uncertainty term, as well as a set of categorical policy terms10.

In the sense of the EPU, we also use the financial stress indicator (FSI) for the U.S

from Püttmann (2018). The essence of the FSI is being an indicator of negative financial

sentiment. It is based on the reporting in five major US newspapers11. Püttmann (2018)

shows that the FSI is a robust indicator, such that an increase in negative financial sentiment

is followed by a fall in output, higher unemployment, lower stock market returns and rising

corporate bond spreads.

Figure 10 plots in each panel the marginal R2 obtained using these sentiment-based

measures, where we use colors to split between each index. Row (I), panel (a) shows the

10As an example, the category Monetary policy has the following terms: Monetary policy - federal re-
serve, the fed, money supply, open market operations, quantitative easing, monetary policy, fed funds rate,
overnight lending rate, Bernanke, Volcker, Greenspan, central bank, interest rates, fed chairman, fed chair,
lender of last resort, discount window, European Central Bank, ECB, Bank of England, Bank of Japan,
BOJ, Bank of China, Bundesbank, Bank of France, Bank of Italy

11Boston Globe, Chicago Tribune, Los Angeles Times, Wall Street Journal and Washington Post.
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marginal R2 for ĈP
h

t , and panel (b) plots for L̂N
h

t for comparison. Row (II) panel (a) plots

for our spanning factor
(
τ>F̂t

)h
t
, and panel (b) for the unspanned factor

(
κ>ξ̂

)h
t
. Rows

(III) and (IV) plots for the other derived unspanned state variables: in panel (III-a) we

have
(
κ>ξ̂

)(−2),h

t
, panel (III-b) plots

(
κ>ξ̂

)(−3),h

t
, panel (IV-a) shows the marginal R2 for(

κ>ξ̂
)(−4),h

t
, and panel (IV-b) for

(
κ>ξ̂

)(−5),h

t
.

It is clear 10 from figure three facts: (i) our spanning factor and the Cochrane-Piazzesi

factor have similar marginal R2, (ii) our unspanned state factors and the Ludvingson-Ng also

have similar marginal R2, and most important (iii) our unspanned factors has their highest

R2 with the categorical EPU related to monetary policy. Therefore, there is some evidence

that the spanned factor
(
τ>F̂t

)h
t
, or even the Cochrane-Piazzesi factor, cannot capture some

economy sentiment associated with possible changes in the monetary policy.

4.4 Out-of-Sample Forecasting Performance

In this section we are interested in to know how the predictive regressions using our DNN

derived state variables behave in an out-of-sample (OoS) analysis. Following Campbell and

Thompson (2007); Gargano et al. (2019), we compute the out-of-sample R2 for all possible

predictive regression models from tables 1 and 3. Additionally, we also consider univariate

predictive regressions using only L̂N
h

t , or fs
(n,h)
t , or ĈP

h

t . We set the out-of-sample period

to range from 1997 : 01 to 2017 : 12, where the data from 1993 : 01 to 1996 : 12 is used to

initiate the analysis. To avoid any look-ahead bias, at each τ ∈ τOoS, where τOoS is the OoS

subsample, we use all the previous information up to τ − 1 to obtain the point forecast of

rx(n) for the month τ . The out-of-sample R2 is computed as

R
2(n)
OoS,i = 1−

∑
τ∈τOoS

(
rx

(n)
t+h/12|t − r̂x

(n)
t+h/12|t

)2

∑
τ∈τOoS

(
rx

(n)
t+h/12|t − rx

(n)
t+h/12|t

)2 (29)

where r̂x
(n)
t+h/12|t is the estimate of the conditional mean of the excess returns for the bond

with maturity (n), and rx
(n)
t+h/12|t is the estimate of the conditional mean assuming that the

excess returns are constant (as under the expectation hypothesis), implying that the βs from

all predictive regressions are assumed to be zero for the same bond with maturity (n). Notice

that evidence of time-varying return predictability is obtained when the out-of-sample R2 is

positive.
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Table 5: Out-of-Sample R2

Regression Maturity n = 2 Maturity n = 3 Maturity n = 4 Maturity n = 5

rx
(n)
t+h/12 = β0 + β1(τ

>F̂t)
h
t + εt+h/12 0.17 0.03 -0.02 -0.04

rx
(n)
t+h/12 = β0 + β1M τ>F̂(κ

>ξ̂)
(−n),h
t + εt+h/12 0.21 0.05 -0.01 -0.02

rx
(n)
t+h/12 = β0 + β1M τ>F̂(κ

>ξ̂)ht + εt+h/12 0.22 0.05 -0.01 -0.03

rx
(n)
t+h/12 = β0 + β1(τ

>F̂)ht + β2L̂N
h

t + εt+h/12 0.21 0.04 -0.03 -0.05

rx
(n)
t+h/12 = β0 + β1(τ

>F̂)ht + β2M τ>F̂(κ
>ξ̂)

(−n),h
t + β3L̂N

h

t + εt+h/12 0.23 0.04 -0.02 -0.05

rx
(n)
t+h/12 = β0 + β1(τ

>F̂)ht + β2fs
(n,h)
t + εt+h/12 0.26 0.08 0.02 -0.00

rx
(n)
t+h/12 = β0 + β1(τ

>F̂)ht + β2M τ>F̂(κ
>ξ̂)

(−n),h
t + β3fs

(n,h)
t + εt+h/12 0.27 0.08 0.02 -0.00

rx
(n)
t+h/12 = β0 + β1(τ

>F̂)ht + β2ĈP
h

t + εt+h/12 0.20 0.01 -0.06 -0.09

rx
(n)
t+h/12 = β0 + β1(τ

>F̂)ht + β2M τ>F̂(κ
>ξ̂)

(−n),h
t + β3ĈP

h

t + εt+h/12 0.22 0.01 -0.06 -0.08

rx
(n)
t+h/12 = β0 + β1(τ

>F̂)ht + β2L̂N
h

t + β3fs
(n,h)
t + β4ĈP

h

t + εt+h/12 0.19 -0.03 -0.10 -0.13

rx
(n)
t+h/12 = β0 + β1(τ

>F̂)ht + β2M τ>F̂(κ
>ξ̂)

(−n),h
t + β3L̂N

h

t + β4fs
(n,h)
t + β5ĈP

h

t + εt+h/12 0.19 -0.04 -0.11 -0.13

rx
(n)
t+h/12 = β0 + β1L̂N

h

t + εt+h/12 0.12 -0.02 -0.06 -0.07

rx
(n)
t+h/12 = β0 + β1fs

(n,h)
t + εt+h/12 0.18 0.05 0.00 -0.01

rx
(n)
t+h/12 = β0 + β1ĈP

h

t + εt+h/12 0.15 -0.02 -0.08 -0.10

Table 5 reports the OoS R2 of our predictive regressions. The first three rows present the same regressions models from table 1, the last three rows

report the univariate predictive regression using the other factors from the literature: L̂N
h

t , fs
(n,h)
t , and ĈP

h

t . Finally, the remaining rows are the
same regressions models from table 3. The out-of-sample period ranges from 1997 : 01 to 2017 : 12, where the data from 1993 : 01 to 1996 : 12 is used
to initiate the analysis.
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Table 5 summarizes the R2
OoS of our predictive regressions. The first three rows present

the same regressions models from table 1, the last three rows report the univariate predictive

regression using the other factors from the literature: the Cochrane-Piazzesi and Ludvingson-

Ng factors, and Fama-Bliss regressions with forward spreads. Finally, the remaining rows

are the same regressions models from table 3.

It is clear that for n = 2 and n = 3, we see evidence of time-varying return predictability.

Also, we can see indication that the parsimonious regressions using either
(
τ>F̂t

)h
t

or our

unspanned factors, provide comparable better R2
OoS, especially for low maturities. Notice

that our factors provide higher R2
OoS when compared to univariate predictive regressions

using other factors from the literature. For longer maturities, especially n = 5, no regression

model provided evidence of time-varying return predictability. However, the higher R2
OoS are

still those obtained using the DNN factors.

4.5 Relation with PCs

A natural question is how these factors relate with the first principal components from

the term-structure. In table 6 we present the correlation between the first five principal

components and our state variables, the spanning factor
(
τ>F̂t

)h
t

and the unspannned

factor M τ>F̂(κ>ξ̂)ht . We also computed the correlations with the other representation of

the unspanned factors M τ>F̂(κ>ξ̂)
(−n),h
t , with the Cochrane-Piazzesi and Ludvingson-Ng

factors, and for the sake of completeness with the latent DNN factors f
(n),h
t,DNN derived from

the selected neural network.

The first five principal components is correlated out of the monthly set of yields Zy
t ={

y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
from 1993 to 2017. We see that the first principal component

(level) is negatively correlated with the spanning factor (−0.7549) and almost zero correlation

with the unspanned factor(s). The PC1 (level) has a similar correlation with the Cochrane-

Piazzesi factor (−0.717), and therefore an irrelevant correlation with the Ludvingson-Ng

factor (0.0492) as well. The following two principal components have a small correlation

with the spanned factor (0.139 and −0.0498, respectively). However, we see a somewhat

interesting positive correlation (0.428) between the curvature component and the unspanned

factor. The takeaway from table 6 is that the spanning factor captures negatively the slope

of the yield curve, and the unspanning factor has some positive linear association with the

curvature of the term-structure.

Additionally, we project our spanning and unspanning factors in an increasing set of

first principal components (up to PC5). The R-squared of these regressions are reported

in table 7. The regressions are computed in such a way that the first column uses PC1 as
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Table 6: Correlations with Principal Components of the Term-Structure

PC1 PC2 PC3 PC4 PC5
Level Slope Curvature

Spanning Factor (τ>F̂)ht -0.7549 0.1390 -0.0498 0.1685 -0.0731

Unspanning Factors M τ>F̂(κ>ξ̂)ht -0.0212 -0.1854 0.4276 -0.0313 0.0907

M τ>F̂(κ>ξ̂)
(−2),h
t -0.0532 -0.2055 0.4353 -0.0635 0.0953

M τ>F̂(κ>ξ̂)
(−3),h
t -0.1426 -0.2531 0.4837 -0.1288 0.0909

M τ>F̂(κ>ξ̂)
(−4),h
t -0.0709 -0.1939 0.4791 -0.0424 0.0744

M τ>F̂(κ>ξ̂)
(−5),h
t 0.0204 -0.1285 0.4284 0.0397 0.0671

Other Factors ĈP
h

t -0.7170 0.2799 0.2859 0.3689 0.0413

L̂N
h

t 0.0492 -0.1539 0.2745 -0.0328 -0.0240

Derived f
(n),h
t,DNN f

(2),h
t,DNN -0.7378 -0.0243 -0.0424 0.1556 -0.0399

f
(3),h
t,DNN -0.4654 -0.1406 -0.1674 0.1332 0.0350

f
(4),h
t,DNN -0.1252 -0.0483 -0.3031 0.1284 0.0389

f
(5),h
t,DNN 0.1284 0.0498 -0.3747 0.0690 0.1224

Table 6 reports the correlation of the first five principal components, PC1 (level), PC2 (slope), PC3 (cur-

vature), PC4, and PC5 computed from the the monthly set of yields Zy
t =

{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
.

The correlations are calculated against the spanning factor, the unspanned factor(s), the Cochrane-Piazzesi
and Ludvingson-Ng factors, and for the sake of completeness with the latent DNN factors. The period of
analysis ranges from 1993:01 to 2017:12.

the independent variable, the second column PC1 and PC2, and so on. We see that our

single spanning factor is associated with a larger set of principal components. In column

(III), where the R-squared of the regressions using level, slope and curvature components

are used, we see an R-squared of 0.592 for the spanning factor, 0.218 for the unspanning

factor M τ>F̂(κ>ξ̂)ht . For the first three principal component, we see a similar pattern with

the Cochrane-Piazzesi factor, with a little higher values; and it is expected given the nature

of the derivation of the Ludvingson-Ng factor, the R-squared remain low for all cases.

4.6 A Robustness Check

Recent studies in the forecasting literature raised the issue that defining the sample

split may be data-mined (Hansen and Timmermann, 2012; Kelly and Pruitt, 2013; Rossi

and Inoue, 2012). As a robustness check, we seek to know if the results reported of the

statistical significance of our state factors could be a sample-specific fact. To demonstrate

the robustness of our estimates to alternative sample splits, we re-run the same regressions

from table 1 restricting the series up to the last month of each year from 1994 up to the last

year of analysis, 2017.
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Figure 11

Regression Model (1) Regression Model (2) Regression Model (3)
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Figure 11 reports the estimates of each one of the three regressions models reported similiar to those
summarized in table 1, where the x-axis defines the end of the sample. All samples start in 1993 : 01.

Regression Model (1) is given by rx
(n)
t+h/12 = β0 + β1(τ>F̂t)

h
t + εt+h/12. Regression Model (2) is given

by rx
(n)
t+h/12 = β0 + β1Mτ>F̂

(κ>ξ̂)
(−n),h
t+h/12 + εt+h/12. Regression Model (3) is given by rx

(n)
t+h/12 =

β0 +β1Mτ>F̂
(κ>ξ̂)ht+h/12 + εt+h/12. The black line represents the estimates of

(
τ>F̂t

)h
t
. The blue line rep-

resents the estimates of Mτ>F̂
(κ>ξ̂)

(−n),h
t+h/12. Finally, the red represents the estimates of Mτ>F̂

(κ>ξ̂)ht+h/12.

The figure is split in four panels, each panel representing one maturity. Statistically significant coefficients
are presented as green points.
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Figure 12: Regression Coefficients of
(
τ>F̂t

)h
t

Over Time as a Function of Maturity (n)

Figure 12 plots the behavior of our spanning factor
(
τ>F̂t

)h
t

as a function of maturity (n) over the period

of analysis (1993-2017).

Figure 13: Regression Coefficients ofM τ>F̂(κ>ξ̂)
(−n),h
t+h/12 Over Time as a Function of Maturity

(n)

Figure 13 plots the behavior of our unspanned factor Mτ>F̂
(κ>ξ̂)

(−n),h
t+h/12 as a function of maturity (n) over

the period of analysis (1993-2017).
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Table 7: R-Squared of Projections - Principal Components of the Term-Structure

(I) (II) (III) (IV) (V)

PC1 (I) + PC2 (II) + PC3 (III) + PC4 (IV) + PC5

Spanning Factor (τ>F̂)ht 0.5699 0.5892 0.5917 0.6201 0.6255

Unspanning Factors M τ>F̂(κ>ξ̂)ht 0.0005 0.0348 0.2177 0.2187 0.2269

M τ>F̂(κ>ξ̂)
(−2),h
t 0.0028 0.0451 0.2346 0.2386 0.2477

M τ>F̂(κ>ξ̂)
(−3),h
t 0.0203 0.0844 0.3184 0.3350 0.3432

M τ>F̂(κ>ξ̂)
(−4),h
t 0.0050 0.0426 0.2722 0.2740 0.2795

M τ>F̂(κ>ξ̂)
(−5),h
t 0.0004 0.0169 0.2005 0.2021 0.2066

Other Factors ĈP
h

t 0.5140 0.5924 0.6741 0.8102 0.8119

L̂N
h

t 0.0024 0.0261 0.1014 0.1025 0.1031

Derived f
(n),h
t,DNN f

(2),h
t,DNN 0.5443 0.5449 0.5467 0.5709 0.5725

f
(3),h
t,DNN 0.2166 0.2363 0.2643 0.2821 0.2833

f
(4),h
t,DNN 0.0157 0.0180 0.1099 0.1264 0.1279

f
(5),h
t,DNN 0.0165 0.0190 0.1593 0.1641 0.1791

Table 7 reports the R-squared of the projection of our spanning and unspanning factor(s) in an increasing
set of the first five principal components: PC1 (level), PC2 (slope), PC3 (curvature), PC4, and PC5. The

principal components are computed from the the monthly set of yields Zy
t =

{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
.

We also compute the regressions for the Cochrane-Piazzesi and Ludvingson-Ng factors, and for the sake of
completeness with the latent DNN factors. In column (I), we regress the factors on PC1, in column (II),
we regress the factors on PC1 and PC2, in column (III), we regress the factor on PC1, PC2, and PC3, in
column (IV), we regress the factors on PC1, PC2, PC3, and PC4, and finally in column (V), we regress the
factors on PC1, PC2, PC3, PC4, and PC5. The period of analysis ranges from 1993:01 to 2017:12.

Figure 11 reports the coefficients estimates of
(
τ>F̂t

)h
t
, M τ>F̂(κ>ξ̂)

(−n),h
t+h/12 and

M τ>F̂(κ>ξ̂)ht+h/12. In a recursive approach we seek to show how the estimates of the pa-

rameters varies across an expanding sample size and the statistical significance as well. The

figure has four panels, each panel representing one maturity. Statistically significant coeffi-

cients are presented as green points. Clearly we see that, despite the initial variation in the

estimates for the first years, what is expected given the limited sample size, the (i) estimates

do not behave erratically with abrupt variations, and (ii) the vast majority of the estimates

for each year from 1994 to 2017 is statistically significant.

In figure 12 we plot the estimates obtained in these regressions ranging from 1994 to

2017 across all maturities. The figure shows a clear pattern for the estimates of
(
τ>F̂t

)h
t

is increasing in the maturity (n). Notice that the estimates of this increasing line shifted

during both recessions in the period of analysis. Another pattern that can be inferred from

this figure is that over time the difference between longer maturities and shorter shrunk over

the period 1993 to 2017, what can be seen as the curve of
(
τ>F̂t

)h
t

becoming more flat over

time.
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Similarly, figure 12 plots the regression coefficients of M τ>F̂(κ>ξ̂)
(−n),h
t+h/12 as a function of

Maturity (n), and figure 15 in Appendix A.1 plots the regression coefficients ofM τ>F̂(κ>ξ̂)ht+h/12.

The pattern mentioned above maintains for the unspanned factor M τ>F̂(κ>ξ̂)
(−n),h
t+h/12. How-

ever, for M τ>F̂(κ>ξ̂)ht+h/12 the curve as a function of maturities are much flatter when

compared to the other state variables, and analogously to the Cochrane-Piazzesi factor, it

has a more clear tent shape. This format becomes more evident during the recessions, when

mid levels of maturity have the highest value for this factor, while low and high level of

maturities are smaller.

4.7 GMM/GEL Estimation

As an additional robustness check, in a similar fashion to Lee (2018), we can use of GMM

to estimate jointly the parameters of our state variables and obtain better standard errors

estimates for the inference of our parameters. This is especially important as we have some

generated regressors in our analysis, and that the dependent variables (rx
(n)
t+h) have clear

cross-sectional correlations among them. The states variables are obtained as:

rxt =κ0 + κ1ξ
(2)
t + κ2ξ

(3)
t + κ3ξ

(4)
t + κ4ξ

(5)
t + ut (30)

(κ>ξ̂)ht =δ0 + δ1

(
τ>F̂t

)h
t

+ et (31)

where rxt =
∑5

n=2 rx
(n)
t /4 and (κ>ξ̂)ht = κ̂1,tξ

(2)
t +κ̂2,tξ

(3)
t +κ̂3,tξ

(4)
t +κ̂4,tξ

(5)
t , which is obtained

in equation (30). Then, in the second stage for the risk premium forecasts we run:

rx
(n)
t+h/12 = β

(n)
0 + β

(n)
1

(
τ>F̂t

)h
t

+ β
(n)
2 M τ>F̂(κ>ξ̂)ht + ε

(n)
t+h/12 (32)

for each of the four maturities n ∈ {2, 3, 4, 5}. We can define the vector of moments of our

GMM as below:
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gT (θ) =



ut ⊗
(

1 ξ
(2)
t ξ

(3)
t ξ

(4)
t ξ

(5)
t

)
et ⊗

(
1

(
τ>F̂t

)h
t

)
ε

(2)
t+1 ⊗

(
1

(
τ>F̂t

)h
t

M τ>F̂(κ>ξ̂)ht

)
ε

(3)
t+1 ⊗

(
1

(
τ>F̂t

)h
t

M τ>F̂(κ>ξ̂)ht

)
ε

(4)
t+1 ⊗

(
1

(
τ>F̂t

)h
t

M τ>F̂(κ>ξ̂)ht

)
ε

(5)
t+1 ⊗

(
1

(
τ>F̂t

)h
t

M τ>F̂(κ>ξ̂)ht

)



(33)

where θ is the 19× 1 vector of all the parameters as in

θ =
[
κ0 κ1 κ2 κ3 κ4 δ0 δ1 β

(2)
0 β

(2)
1 β

(2)
2 . . . β

(5)
0 β

(5)
1 β

(5)
2

]>
.

Table 8: GMM and GEL estimations of the spanning factor
(
τ>F̂t

)h
t

and the unspanned

factor
(
κ>ξ̂

)(h

t

Variable Estimate se(GMM) se(GEL) se(OLS) GMM t-stat GEL t-stat OLS t-stat

rx
(2)
t+h/12 (τ>F̂)ht 0.811 0.130 0.141 0.110 6.259∗∗∗ 5.741∗∗∗ 7.355∗∗∗

M τ>F̂(κ>ξ̂)ht 0.525 0.080 0.087 0.124 6.579∗∗∗ 6.002∗∗∗ 4.228∗∗∗

rx
(3)
t+h/12 (τ>F̂)ht 0.943 0.196 0.219 0.173 4.802∗∗∗ 4.307∗∗∗ 5.447∗∗∗

M τ>F̂(κ>ξ̂)ht 0.757 0.075 0.080 0.202 10.089∗∗∗ 9.445∗∗∗ 3.743∗∗∗

rx
(4)
t+h/12 (τ>F̂)ht 1.065 0.260 0.294 0.236 4.097∗∗∗ 3.624∗∗∗ 4.519∗∗∗

M τ>F̂(κ>ξ̂)ht 0.945 0.119 0.124 0.282 7.972∗∗∗ 7.62∗∗∗ 3.355∗∗∗

rx
(5)
t+h/12 (τ>F̂)ht 1.181 0.320 0.364 0.296 3.695∗∗∗ 3.248∗∗ 3.99∗∗∗

M τ>F̂(κ>ξ̂)ht 1.081 0.194 0.216 0.359 5.558∗∗∗ 5.006∗∗∗ 3.011∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8 reports the the standard errors and t-statistics from the Generalized Empirical Likelihood (GEL),
Generalized Empirical Likelihood (GEL), and Ordinary Least Squares (OLS). The vector of moments for
the GMM and GEL is given in equation (33). The standard errors for GMM and OLS use HAC variance-
covariance matrix, as in Newey and West (1987).

Table 8 presents the standard error estimates using OLS and GMM for the risk premium

forecasts parameters as in equation 32, for the four maturities considered. The takeaway

from this table is that even though that the standard errors from the GMM are a little

bit larger when compared to the ones generated by OLS, the inference over the interested

parameters keeps still being strongly significant. We control the auto-correlation with a HAC
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variance-covariance matrix for both methods, as in Newey and West (1987).

To corroborate the robustness of our generated regressors, we also make of use of the

Generalized Empirical Likelihood (GEL). As Newey and Smith (2004) and Anatolyev (2005)

had shown, GEL has a significant advantage over the GMM estimation, since the bias of the

latter does not increase with the number of moment conditions, what does not necessarily

holds for GMM. Thus, the efficiency improves when the number of conditions goes up.

We can use the same vector of moments as in equation (33) to estimate the risk premium

forecasts parameters. Table 8 also reports the standard errors and the t-statistics for the

same regressions. We see that the standard errors slightly larger than GMM and OLS ones,

but still strongly statistically significant. In short, these results endorse the robustness of

our factors in the forecasting the risk premium of the Treasury bonds.

5 Conclusion

In this paper we proposed a novel approach for deriving a single state factor consistent

with a dynamic term-structure with unspanned risks. We make use of deep neural networks

to uncover relationships in the full set of information from the yield curve. This allows us

through an approximation to to derive a single state variable factor that spans the space of

all the information from the term-structure. We also introduced a way to obtain unspanned

risks from the yield curve that is used to complete our state space.

We show that this parsimonious number of state variables have predictive power for

excess returns of bonds over 1-month holding period. Additionally, we provide an intuitive

interpretation of derived factors, and show what information from macroeconomic variables

and sentiment-based measures they can capture.
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A Appendix

A.1 Data

Figure 14: 12-Month Bonds Excess Returns
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Figure 14 shows the 12-month excess returns for maturities with n = 2, 3, 4 and 5 years. The excess returns

are calculeted as in equation (4), i.e., rx
(n)
t+1 = ny

(n)
t − (n+ 1)y

(n−1)
t+1 − ynt . Each panel represents one of the

four maturities. The y-axis shows values in percentage (%). NBER-classified recessions are shaded in light
red.
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Table 9: Descriptive Statistics - DNN Factor f
(n),h
t,DNN by MLP Architecture and Choice of Zy

t

Panel A: Zt: set of forward rates
f
(2),h
t,DNN f

(3),h
t,DNN f

(4),h
t,DNN f

(5),h
t,DNN

Model Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1

DNN 1 0.3300 0.0368 0.8099 0.3361 0.0458 0.8372 0.3377 0.0639 0.7711 0.2874 0.1114 0.7993
DNN 2 0.3360 0.0364 0.8964 0.3369 0.0342 0.8780 0.3463 0.0563 0.8708 0.3214 0.0772 0.8462
DNN 3 0.4274 0.0225 0.8092 0.4270 0.0237 0.7397 0.4199 0.0341 0.8338 0.4054 0.0413 0.8563

Panel B: Zt: set of yields
f
(2),h
t,DNN f

(3),h
t,DNN f

(4),h
t,DNN f

(5),h
t,DNN

Model Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1

DNN 1 0.3441 0.0373 0.8106 0.3359 0.0393 0.8324 0.3308 0.0534 0.7812 0.2781 0.1122 0.9090
DNN 2 0.3370 0.0360 0.8821 0.3379 0.0327 0.8508 0.3351 0.0432 0.8066 0.3288 0.0628 0.8350
DNN 3 0.4363 0.0204 0.7833 0.4335 0.0226 0.7264 0.4298 0.0305 0.8150 0.4226 0.0403 0.8411

Panel C: Zt: set of yields and forward rates
f
(2),h
t,DNN f

(3),h
t,DNN f

(4),h
t,DNN f

(5),h
t,DNN

Model Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1

DNN 1 0.3421 0.0512 0.6709 0.3313 0.0690 0.6546 0.3088 0.0969 0.7587 0.2642 0.1110 0.6448
DNN 2 0.3418 0.0356 0.8732 0.3421 0.0340 0.7917 0.3434 0.0449 0.8122 0.3429 0.0647 0.8116
DNN 3 0.4375 0.0202 0.7627 0.4321 0.0232 0.7543 0.4246 0.0310 0.8092 0.4190 0.0381 0.8319

Table 9 reports the mean, standard deviation and the first autocorrelation (ρ̂1) of the derived f
(n),h
t,DNN for each scenario under consid-

eration. Each panel considers a different set of information from the term-structure to derive the factor f
(n),h
t,DNN . Panel A shows the

the derived DNN factors for Zy
t =

{
f
(2/12)
t , f

(3/12)
t , . . . , f

(60)
t

}
, Panel B for Zy

t =
{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
and Panel C for Zy

t ={
f
(2/12)
t , f

(3/12)
t , . . . , f

(60/12)
t , y

(1)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
. The descriptive statistics is computed for for each group of maturity n ∈ {1, 2, 3, 4}. Pe-

riod of analysis ranges from 1993:01 to 2017:12.
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Table 10: Descriptive Statistics - ξ
(n),h
t by MLP Architecture and Choice of Zy

t

Panel A: Zt: set of forward rates
ξ

(2),h
t ξ

(3),h
t ξ

(4),h
t ξ

(5),h
t

Model Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1

DNN 1 -0.0311 0.4799 0.2417 0.0187 0.7713 0.1718 0.0610 1.0581 0.1324 0.1558 1.3409 0.1178
DNN 2 -0.0265 0.4797 0.2427 0.0145 0.7716 0.1645 0.0550 1.0651 0.1323 0.1240 1.3424 0.1099
DNN 3 -0.0394 0.4796 0.2428 -0.0015 0.7729 0.1636 0.0402 1.0630 0.1261 0.0898 1.3419 0.1036

Panel B: Zt: set of yields
ξ

(2),h
t ξ

(3),h
t ξ

(4),h
t ξ

(5),h
t

Model Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1

DNN 1 -0.0344 0.4810 0.2462 0.0144 0.7705 0.1625 0.0701 1.0591 0.1263 0.1804 1.3347 0.1059
DNN 2 -0.0254 0.4793 0.2422 0.0159 0.7721 0.1657 0.0646 1.0600 0.1279 0.1135 1.3410 0.1077
DNN 3 -0.0685 0.4952 0.2903 -0.0032 0.7724 0.1640 0.0366 1.0636 0.1276 0.0874 1.3429 0.1062

Panel C: Zt: set of yields and forward rates
ξ

(2),h
t ξ

(3),h
t ξ

(4),h
t ξ

(5),h
t

Model Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1 Mean sd ρ̂1

DNN 1 -0.0240 0.4760 0.2492 0.0336 0.7683 0.1747 0.0999 1.0560 0.1423 0.1932 1.3370 0.1004
DNN 2 -0.0269 0.4795 0.2389 0.0146 0.7711 0.1650 0.0590 1.0612 0.1296 0.1051 1.3428 0.1084
DNN 3 -0.0622 0.4956 0.2867 0.0012 0.7728 0.1603 0.0450 1.0620 0.1221 0.0872 1.3419 0.1030

Table 9 reports the mean, standard deviation and the first autocorrelation (ρ̂1) of the ξ
(n),h
t for each scenario under consideration.

Each panel considers a different set of information from the term-structure to derive the factor f
(n),h
t,DNN . Panel A shows the the de-

rived DNN factors for Zy
t =

{
f
(2/12)
t , f

(3/12)
t , . . . , f

(60)
t

}
, Panel B for Zy

t =
{
y
(1/12)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
and Panel C for Zy

t ={
f
(2/12)
t , f

(3/12)
t , . . . , f

(60/12)
t , y

(1)
t , y

(2/12)
t , . . . , y

(60/12)
t

}
. The descriptive statistics is computed for for each group of maturity n ∈ {1, 2, 3, 4}. Pe-

riod of analysis ranges from 1993:01 to 2017:12.
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Figure 15: Regression Coefficients ofM τ>F̂(κ>ξ̂)ht+h/12 Over Time as a Function of Maturity

(n)

Figure 15 plots the behavior of our unspanned factor Mτ>F̂
(κ>ξ̂)ht+h/12 as a function of maturity (n) over

the period of analysis (1993-2017).
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Table 11: FRED-MD

Group FRED Code Description Group FRED Code Description

Output and income

RPI Real Personal Income

Money and credit

M1SL M1 Money Stock
W875RX1 Real personal income ex transfer receipts M2SL M2 Money Stock
INDPRO IP Index M2REAL Real M2 Money Stock
IPFPNSS IP: Final Products and Nonindustrial Supplies AMBSL St. Louis Adjusted Monetary Base
IPFINAL IP: Final Products (Market Group) TOTRESNS Total Reserves of Depository Institutions
IPCONGD IP: Consumer Goods NONBORRES Reserves Of Depository Institutions
IPDCONGD IP: Durable Consumer Goods BUSLOANS Commercial and Industrial Loans
IPNCONGD IP: Nondurable Consumer Goods REALLN Real Estate Loans at All Commercial Banks
IPBUSEQ IP: Business Equipment NONREVSL Total Nonrevolving Credit
IPMAT IP: Materials CONSPI Nonrevolving Consumer Credit to Personal Income
IPDMAT IP: Durable Materials MZMSL MZM Money Stock
IPNMAT IP: Nondurable Materials DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding
IPMANSICS IP: Manufacturing (SIC) DTCTHFNM Total Consumer Loans and Leases Outstanding
IPB51222s IP: Residential Utilities INVEST Securities in Bank Credit at All Commercial Banks

IPFUELS IP: Fuels

Interest and exchange rates

FEDFUNDS Effective Federal Funds Rate
CUMFNS Capacity Utilization: Manufacturing CP3Mx 3-Month AA Financial Commercial Paper Rate

Labor market

HWI Help-Wanted Index for United States TB3MS 3-Month Treasury Bill
HWIURATIO Ratio of Help Wanted/No. Unemployed TB6MS 6-Month Treasury Bill
CLF16OV Civilian Labor Force GS1 1-Year Treasury Rate
CE16OV Civilian Employment GS5 5-Year Treasury Rate
UNRATE Civilian Unemployment Rate GS10 10-Year Treasury Rate
UEMPMEAN Average Duration of Unemployment (Weeks) AAA Moody’s Seasoned Aaa Corporate Bond
UEMPLT5 Civilians Unemployed - Less Than 5 Weeks BAA Moody’s Seasoned Baa Corporate Bond
UEMP5TO14 Civilians Unemployed for 43599 Weeks COMPAPFFx 3-Month Commercial Paper Minus
UEMP15OV Civilians Unemployed - 15 Weeks & Over TB3SMFFM 3-Month Treasury C Minus FEDFUNDS
UEMP15T26 Civilians Unemployed for 15-26 Weeks TB6SMFFM 6-Month Treasury C Minus FEDFUNDS
UEMP27OV Civilians Unemployed for 27 Weeks and Over T1YFFM 1-Year Treasury C Minus FEDFUNDS
CLAIMSx Initial Claims T5YFFM 5-Year Treasury C Minus FEDFUNDS
PAYEMS All Employees: Total Nonfarm T10YFFM 10-Year Treasury C Minus FEDFUNDS
USGOOD All Employees: Goods-Producing Industries AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS
CES1021000001 All Employees: Mining and Logging: Mining BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS
USCONS All Employees: Construction TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies
MANEMP All Employees: Manufacturing EXSZUSx Switzerland / U.S. Foreign Exchange Rate
DMANEMP All Employees: Durable goods EXJPUSx Japan / U.S. Foreign Exchange Rate
NDMANEMP All Employees: Nondurable goods EXUSUKx U.S. / U.K. Foreign Exchange Rate
SRVPRD All Employees: Service-Providing Industries EXCAUSx Canada / U.S. Foreign Exchange Rate

USTPU All Employees: Trade, Transportation & Utilities

Prices

WPSFD49207 PPI: Finished Goods
USWTRADE All Employees: Wholesale Trade WPSFD49502 PPI: Finished Consumer Goods
USTRADE All Employees: Retail Trade WPSID61 PPI: Intermediate Materials
USFIRE All Employees: Financial Activities WPSID62 PPI: Crude Materials
USGOVT All Employees: Government OILPRICEx Crude Oil, Spliced WTI and Cushing
CES0600000007 Avg Weekly Hours : Goods-Producing PPICMM PPI: Metals and Metal Products:
AWOTMAN Avg Weekly Overtime Hours : Manufacturing CPIAUCSL CPI : All Items
AWHMAN Avg Weekly Hours : Manufacturing CPIAPPSL CPI : Apparel
CES0600000008 Avg Hourly Earnings : Goods-Producing CPITRNSL CPI : Transportation
CES2000000008 Avg Hourly Earnings : Construction CPIMEDSL CPI : Medical Care
CES3000000008 Avg Hourly Earnings : Manufacturing CUSR0000SAC CPI : Commodities

Housing

HOUST Housing Starts: Total New Privately Owned CUSR0000SAD CPI : Durables
HOUSTNE Housing Starts, Northeast CUSR0000SAS CPI : Services
HOUSTMW Housing Starts, Midwest CPIULFSL CPI : All Items Less Food
HOUSTS Housing Starts, South CUSR0000SA0L2 CPI : All Items Less Shelter
HOUSTW Housing Starts, West CUSR0000SA0L5 CPI : All Items Less Medical Care
PERMIT New Private Housing Permits (SAAR) PCEPI Personal Cons. Expend.: Chain Index
PERMITNE New Private Housing Permits, Northeast (SAAR) DDURRG3M086SBEA Personal Cons. Exp: Durable goods
PERMITMW New Private Housing Permits, Midwest (SAAR) DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods
PERMITS New Private Housing Permits, South (SAAR) DSERRG3M086SBEA Personal Cons. Exp: Services

PERMITW New Private Housing Permits, West (SAAR)

Stock market

S&P 500 S&P’s Common Stock Price Index: Composite

Consumption, orders, and inventories

DPCERA3M086SBEA Real Personal Consumption Expenditures S&P div yield S&P’s Composite Common Stock: Dividend Yield
CMRMTSPLx Real Manu. and Trade Industries Sales S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio
RETAILx Retail and Food Services Sales VXOCLSx VXO

ACOGNO New Orders for Consumer Goods
AMDMNOx New Orders for Durable Goods
ANDENOx New Orders for Nondefense Capital Goods
AMDMUOx Unfilled Orders for Durable Goods
BUSINVx Total Business Inventories
ISRATIOx Total Business: Inventories to Sales Ratio
UMCSENTx Consumer Sentiment Index

Table 11 lists the 128 macroeconomic and financial variables from the FRED-MD dataset. The table reports
the group, FRED code and a description of each variable. The variables are split in one of the 8 groups: (1)
output and income, (2) labor market, (3) housing, (4) consumption, orders, and inventories, (5) money and
credit, (6) interest and exchange rates, (7) prices, and (8) stock market.
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Table 12: Descriptive Statistics - FRED-MD

Full Sample 1962-1992 1993-2017

Fred Code tcode Group Description Mean sd Mean sd Mean sd

RPI 5 Output and income Real Personal Income 0.0030 0.0060 0.0030 0.0040 0.0020 0.0070
W875RX1 5 Output and income Real personal income ex transfer receipts 0.0020 0.0060 0.0030 0.0040 0.0020 0.0070
INDPRO 5 Output and income IP Index 0.0020 0.0070 0.0030 0.0080 0.0020 0.0060
IPFPNSS 5 Output and income IP: Final Products and Nonindustrial Supplies 0.0020 0.0070 0.0030 0.0080 0.0010 0.0060
IPFINAL 5 Output and income IP: Final Products (Market Group) 0.0020 0.0080 0.0030 0.0080 0.0010 0.0070
IPCONGD 5 Output and income IP: Consumer Goods 0.0020 0.0090 0.0020 0.0090 0.0010 0.0070
IPDCONGD 5 Output and income IP: Durable Consumer Goods 0.0020 0.0210 0.0030 0.0220 0.0020 0.0190
IPNCONGD 5 Output and income IP: Nondurable Consumer Goods 0.0010 0.0070 0.0020 0.0080 0.0000 0.0070
IPBUSEQ 5 Output and income IP: Business Equipment 0.0040 0.0120 0.0040 0.0120 0.0030 0.0120
IPMAT 5 Output and income IP: Materials 0.0020 0.0090 0.0020 0.0100 0.0020 0.0080
IPDMAT 5 Output and income IP: Durable Materials 0.0030 0.0130 0.0030 0.0150 0.0030 0.0110
IPNMAT 5 Output and income IP: Nondurable Materials 0.0020 0.0110 0.0030 0.0100 0.0000 0.0110
IPMANSICS 5 Output and income IP: Manufacturing (SIC) 0.0020 0.0080 0.0030 0.0090 0.0020 0.0070
IPB51222s 5 Output and income IP: Residential Utilities 0.0020 0.0350 0.0030 0.0280 0.0010 0.0420
IPFUELS 5 Output and income IP: Fuels 0.0010 0.0190 0.0010 0.0200 0.0010 0.0180
CUMFNS 2 Output and income Capacity Utilization: Manufacturing -0.0060 0.6230 -0.0050 0.7110 -0.0080 0.5000
HWI 2 Labor market Help-Wanted Index for United States 8.2700 169.6090 3.1960 106.1450 14.3210 222.8650
HWIURATIO 2 Labor market Ratio of Help Wanted/No. Unemployed 0.0010 0.0330 0.0000 0.0320 0.0030 0.0340
CLF16OV 5 Labor market Civilian Labor Force 0.0010 0.0030 0.0020 0.0030 0.0010 0.0020
CE16OV 5 Labor market Civilian Employment 0.0010 0.0030 0.0020 0.0030 0.0010 0.0020
UNRATE 2 Labor market Civilian Unemployment Rate -0.0030 0.1730 0.0040 0.1880 -0.0110 0.1550
UEMPMEAN 2 Labor market Average Duration of Unemployment (Weeks) 0.0090 0.6000 0.0090 0.4740 0.0090 0.7230
UEMPLT5 5 Labor market Civilians Unemployed - Less Than 5 Weeks 0.0000 0.0550 0.0020 0.0480 -0.0010 0.0610
UEMP5TO14 5 Labor market Civilians Unemployed for 43599 Weeks 0.0010 0.0540 0.0020 0.0560 -0.0010 0.0520
UEMP15OV 5 Labor market Civilians Unemployed - 15 Weeks & Over 0.0010 0.0510 0.0030 0.0550 -0.0020 0.0440
UEMP15T26 5 Labor market Civilians Unemployed for 15-26 Weeks 0.0010 0.0750 0.0030 0.0780 -0.0020 0.0710
UEMP27OV 5 Labor market Civilians Unemployed for 27 Weeks and Over 0.0010 0.0700 0.0030 0.0780 -0.0010 0.0580
CLAIMSx 5 Labor market Initial Claims 0.0000 0.0480 0.0000 0.0530 -0.0010 0.0400
PAYEMS 5 Labor market All Employees: Total nonfarm 0.0010 0.0020 0.0020 0.0020 0.0010 0.0020
USGOOD 5 Labor market All Employees: Goods-Producing Industries 0.0000 0.0040 0.0000 0.0050 0.0000 0.0040
CES1021000001 5 Labor market All Employees: Mining and Logging: Mining 0.0000 0.0180 0.0000 0.0230 0.0010 0.0090
USCONS 5 Labor market All Employees: Construction 0.0010 0.0090 0.0010 0.0100 0.0020 0.0060
MANEMP 5 Labor market All Employees: Manufacturing 0.0000 0.0040 0.0000 0.0050 -0.0010 0.0030
DMANEMP 5 Labor market All Employees: Durable goods 0.0000 0.0060 0.0000 0.0070 -0.0010 0.0040
NDMANEMP 5 Labor market All Employees: Nondurable goods 0.0000 0.0030 0.0000 0.0030 -0.0010 0.0020
SRVPRD 5 Labor market All Employees: Service-Providing Industries 0.0020 0.0020 0.0020 0.0020 0.0010 0.0010
USTPU 5 Labor market All Employees: Trade, Transportation & Utilities 0.0010 0.0020 0.0020 0.0020 0.0010 0.0020
USWTRADE 5 Labor market All Employees: Wholesale Trade 0.0010 0.0020 0.0020 0.0020 0.0010 0.0020
USTRADE 5 Labor market All Employees: Retail Trade 0.0020 0.0030 0.0020 0.0030 0.0010 0.0020
USFIRE 5 Labor market All Employees: Financial Activities 0.0020 0.0020 0.0020 0.0020 0.0010 0.0020
USGOVT 5 Labor market All Employees: Government 0.0010 0.0030 0.0020 0.0030 0.0010 0.0020
CES0600000007 1 Labor market Avg Weekly Hours : Goods-Producing 40.2940 0.6340 39.9960 0.4900 40.6490 0.6020
AWOTMAN 2 Labor market Avg Weekly Overtime Hours : Manufacturing 0.0020 0.1350 0.0030 0.1510 0.0010 0.1130
AWHMAN 1 Labor market Avg Weekly Hours : Manufacturing 40.7920 0.7240 40.4110 0.5750 41.2460 0.6130
CES0600000008 6 Labor market Avg Hourly Earnings : Goods-Producing 0.0000 0.0040 0.0000 0.0050 0.0000 0.0030
CES2000000008 6 Labor market Avg Hourly Earnings : Construction 0.0000 0.0080 0.0000 0.0100 0.0000 0.0050
CES3000000008 6 Labor market Avg Hourly Earnings : Manufacturing 0.0000 0.0050 0.0000 0.0050 0.0000 0.0030
HOUST 4 Housing Housing Starts: Total New Privately Owned 7.2230 0.3190 7.3070 0.2360 7.1240 0.3730
HOUSTNE 4 Housing Housing Starts, Northeast 5.0590 0.4130 5.2750 0.3400 4.8020 0.3390
HOUSTMW 4 Housing Housing Starts, Midwest 5.5580 0.4240 5.6950 0.3130 5.3960 0.4800
HOUSTS 4 Housing Housing Starts, South 6.4150 0.3030 6.4390 0.2600 6.3860 0.3450
HOUSTW 4 Housing Housing Starts, West 5.7800 0.3870 5.8540 0.3210 5.6910 0.4370
PERMIT 4 Housing New Private Housing Permits (SAAR) 7.1750 0.3120 7.2020 0.2570 7.1440 0.3650
PERMITNE 4 Housing New Private Housing Permits, Northeast (SAAR) 5.0780 0.3900 5.2540 0.3460 4.8690 0.3340
PERMITMW 4 Housing New Private Housing Permits, Midwest (SAAR) 5.5070 0.3880 5.5810 0.3200 5.4190 0.4410
PERMITS 4 Housing New Private Housing Permits, South (SAAR) 6.3070 0.3370 6.2350 0.3210 6.3930 0.3360
PERMITW 4 Housing New Private Housing Permits, West (SAAR) 5.7960 0.3860 5.8590 0.3280 5.7200 0.4340
DPCERA3M086SBEA 5 Consumption, orders, and inventories Real personal consumption expenditures 0.0030 0.0050 0.0030 0.0060 0.0020 0.0030
CMRMTSPLx 5 Consumption, orders, and inventories Real Manu. and Trade Industries Sales 0.0020 0.0100 0.0030 0.0120 0.0020 0.0080
RETAILx 5 Consumption, orders, and inventories Retail and Food Services Sales 0.0050 0.0120 0.0060 0.0130 0.0030 0.0100
ACOGNO 5 Consumption, orders, and inventories New Orders for Consumer Goods 0.0010 0.0130 0.0000 0.0040 0.0030 0.0180
AMDMNOx 5 Consumption, orders, and inventories New Orders for Durable Goods 0.0040 0.0380 0.0050 0.0340 0.0020 0.0410
ANDENOx 5 Consumption, orders, and inventories New Orders for Nondefense Capital Goods 0.0030 0.0780 0.0050 0.0750 0.0020 0.0810
AMDMUOx 5 Consumption, orders, and inventories Unfilled Orders for Durable Goods 0.0050 0.0100 0.0060 0.0110 0.0030 0.0100
BUSINVx 5 Consumption, orders, and inventories Total Business Inventories 0.0040 0.0060 0.0060 0.0060 0.0030 0.0050
ISRATIOx 2 Consumption, orders, and inventories Total Business: Inventories to Sales Ratio 0.0000 0.0170 0.0000 0.0200 0.0000 0.0140
UMCSENTx 2 Consumption, orders, and inventories Consumer Sentiment Index 0.0210 3.2860 0.0200 2.7990 0.0230 3.7910

(Continued)
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Table 12: FRED-MD (Continued)

Full Sample 1962-1992 1993-2017

Fred Code tcode Group Description Mean sd Mean sd Mean sd

M1SL 6 Money and credit M1 Money Stock 0.000 0.009 0.000 0.005 0.000 0.012
M2SL 6 Money and credit M2 Money Stock 0.000 0.003 0.000 0.002 0.000 0.004
M2REAL 5 Money and credit Real M2 Money Stock 0.002 0.005 0.002 0.005 0.003 0.005
AMBSL 6 Money and credit St. Louis Adjusted Monetary Base 0.000 0.018 0.000 0.005 0.000 0.025
TOTRESNS 6 Money and credit Total Reserves of Depository Institutions 0.000 0.064 0.000 0.032 0.000 0.089
NONBORRES 7 Money and credit Reserves Of Depository Institutions 0.000 1.089 0.000 0.035 0.000 1.613
BUSLOANS 6 Money and credit Commercial and Industrial Loans 0.000 0.006 0.000 0.006 0.000 0.007
REALLN 6 Money and credit Real Estate Loans at All Commercial Banks 0.000 0.005 0.000 0.003 0.000 0.007
NONREVSL 6 Money and credit Total Nonrevolving Credit 0.000 0.008 0.000 0.008 0.000 0.008
CONSPI 2 Money and credit Nonrevolving consumer credit to Personal Income 0.000 0.001 0.000 0.001 0.000 0.001
MZMSL 6 Money and credit MZM Money Stock 0.000 0.006 0.000 0.006 0.000 0.005
DTCOLNVHFNM 6 Money and credit Consumer Motor Vehicle Loans Outstanding 0.000 0.025 0.000 0.021 0.000 0.029
DTCTHFNM 6 Money and credit Total Consumer Loans and Leases Outstanding 0.000 0.021 0.000 0.013 0.000 0.027
INVEST 6 Money and credit Securities in Bank Credit at All Commercial Banks 0.000 0.011 0.000 0.010 0.000 0.012
FEDFUNDS 2 Interest and exchange rates Effective Federal Funds Rate 0.000 0.521 0.002 0.691 -0.002 0.162
CP3Mx 2 Interest and exchange rates 3-Month AA Financial Commercial Paper Rate -0.001 0.508 0.001 0.667 -0.003 0.192
TB3MS 2 Interest and exchange rates 3-Month Treasury Bill 0.000 0.431 0.002 0.562 -0.003 0.173
TB6MS 2 Interest and exchange rates 6-Month Treasury Bill -0.001 0.405 0.001 0.527 -0.003 0.170
GS1 2 Interest and exchange rates 1-Year Treasury Rate -0.001 0.423 0.001 0.548 -0.003 0.188
GS5 2 Interest and exchange rates 5-Year Treasury Rate -0.002 0.326 0.006 0.389 -0.011 0.230
GS10 2 Interest and exchange rates 10-Year Treasury Rate -0.002 0.282 0.007 0.326 -0.013 0.218
AAA 2 Interest and exchange rates Moody’s Seasoned Aaa Corporate Bond -0.001 0.224 0.010 0.257 -0.013 0.177
BAA 2 Interest and exchange rates Moody’s Seasoned Baa Corporate Bond 0.000 0.216 0.010 0.228 -0.012 0.201
COMPAPFFx 1 Interest and exchange rates 3-Month Commercial Paper Minus 0.084 0.419 0.031 0.518 0.148 0.241
TB3SMFFM 1 Interest and exchange rates 3-Month Treasury C Minus -0.482 0.711 -0.729 0.860 -0.189 0.263
TB6SMFFM 1 Interest and exchange rates 6-Month Treasury C Minus -0.349 0.765 -0.573 0.941 -0.081 0.311
T1YFFM 1 Interest and exchange rates 1-Year Treasury C Minus 0.026 0.770 -0.074 0.964 0.145 0.409
T5YFFM 1 Interest and exchange rates 5-Year Treasury C Minus 0.723 1.371 0.447 1.611 1.051 0.915
T10YFFM 1 Interest and exchange rates 10-Year Treasury C Minus 1.061 1.658 0.595 1.834 1.617 1.205
AAAFFM 1 Interest and exchange rates Moody’s Aaa Corporate Bond Minus 2.080 1.982 1.245 1.993 3.077 1.433
BAAFFM 1 Interest and exchange rates Moody’s Baa Corporate Bond Minus 3.100 2.084 2.323 2.096 4.026 1.646
TWEXMMTH 5 Interest and exchange rates Trade Weighted U.S. Dollar Index: Major Currencies 0.000 0.015 0.000 0.014 0.000 0.016
EXSZUSx 5 Interest and exchange rates Switzerland / U.S. Foreign Exchange Rate -0.002 0.026 -0.003 0.026 -0.001 0.025
EXJPUSx 5 Interest and exchange rates Japan / U.S. Foreign Exchange Rate -0.002 0.024 -0.003 0.023 0.000 0.026
EXUSUKx 5 Interest and exchange rates U.S. / U.K. Foreign Exchange Rate -0.001 0.022 -0.002 0.023 -0.001 0.021
EXCAUSx 5 Interest and exchange rates Canada / U.S. Foreign Exchange Rate 0.000 0.014 0.001 0.009 0.000 0.018
WPSFD49207 6 Prices PPI: Finished Goods 0.000 0.007 0.000 0.006 0.000 0.008
WPSFD49502 6 Prices PPI: Finished Consumer Goods 0.000 0.009 0.000 0.007 0.000 0.010
WPSID61 6 Prices PPI: Intermediate Materials 0.000 0.007 0.000 0.006 0.000 0.009
WPSID62 6 Prices PPI: Crude Materials 0.000 0.041 0.000 0.030 0.000 0.052
OILPRICEx 6 Prices Crude Oil, spliced WTI and Cushing 0.000 0.095 0.000 0.090 0.000 0.100
PPICMM 6 Prices PPI: Metals and metal products: 0.000 0.033 0.000 0.025 0.000 0.040
CPIAUCSL 6 Prices CPI : All Items 0.000 0.003 0.000 0.003 0.000 0.003
CPIAPPSL 6 Prices CPI : Apparel 0.000 0.005 0.000 0.005 0.000 0.006
CPITRNSL 6 Prices CPI : Transportation 0.000 0.011 0.000 0.006 0.000 0.015
CPIMEDSL 6 Prices CPI : Medical Care 0.000 0.003 0.000 0.003 0.000 0.002
CUSR0000SAC 6 Prices CPI : Commodities 0.000 0.005 0.000 0.004 0.000 0.007
CUSR0000SAD 6 Prices CPI : Durables 0.000 0.003 0.000 0.003 0.000 0.002
CUSR0000SAS 6 Prices CPI : Services 0.000 0.003 0.000 0.003 0.000 0.001
CPIULFSL 6 Prices CPI : All Items Less Food 0.000 0.003 0.000 0.003 0.000 0.003
CUSR0000SA0L2 6 Prices CPI : All items less shelter 0.000 0.004 0.000 0.003 0.000 0.004
CUSR0000SA0L5 6 Prices CPI : All items less medical care 0.000 0.003 0.000 0.003 0.000 0.003
PCEPI 6 Prices Personal Cons. Expend.: Chain Index 0.000 0.002 0.000 0.002 0.000 0.002
DDURRG3M086SBEA 6 Prices Personal Cons. Exp: Durable goods 0.000 0.003 0.000 0.003 0.000 0.003
DNDGRG3M086SBEA 6 Prices Personal Cons. Exp: Nondurable goods 0.000 0.006 0.000 0.004 0.000 0.008
DSERRG3M086SBEA 6 Prices Personal Cons. Exp: Services 0.000 0.002 0.000 0.002 0.000 0.002
S&P 500 5 Stock market S&P’s Common Stock Price Index: Composite 0.005 0.036 0.005 0.036 0.006 0.036
S&P: indust 5 Stock market S&P’s Common Stock Price Index: Industrials 0.006 0.036 0.005 0.037 0.006 0.035
S&P div yield 2 Stock market S&P’s Composite Common Stock: Dividend Yield -0.001 0.121 0.000 0.148 -0.002 0.077
S&P PE ratio 5 Stock market S&P’s Composite Common Stock: Price-Earnings Ratio 0.000 0.046 0.000 0.039 -0.001 0.053
VXOCLSx 1 Stock market VXO 18.929 7.390 18.299 5.981 19.679 8.730

As in McCracken and Ng (2016) we transform the variables following the code presented in column ’tcode’.
The transformation for a series x are: (1) no transformation; (2) ∆xt; (3) ∆2xt; (4) log(xt), (5) ∆log(xt),
(6) ∆2log(xt), and (7) ∆(xt/xt−1 − 1). The column ’gsi’ and ’gsi:description’ present the comparable series
in Global Insight.
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Table 13: Descriptive Statistics - Sentiment-Based Measures

Full Sample 1985-1992 1993-2018

Description Mean sd Mean sd Mean sd

Three Component Index 107.76 32.68 114.78 20.65 105.19 35.78
News-Based Policy Uncert Index 108.06 39.55 106.42 28.04 108.66 43.03
News-Based Historical Economic Policy Uncertainty 146.45 41.47 145.15 30.45 146.93 44.88
1. Economic Policy Uncertainty 101.56 41.96 120.50 39.45 94.63 40.77
2. Monetary policy 97.11 59.30 119.85 64.74 88.78 55.00
Fiscal Policy (Taxes OR Spending) 106.62 65.85 122.12 59.68 100.94 67.19
3. Taxes 106.08 65.32 113.14 55.13 103.49 68.58
4. Government spending 110.91 101.51 152.86 101.14 95.54 97.40
5. Health care 115.76 91.37 68.91 57.97 132.93 95.36
6. National security 96.20 81.23 127.60 85.12 84.69 76.77
7. Entitlement programs 112.41 85.69 79.55 67.82 124.45 88.47
8. Regulation 105.40 55.31 106.27 47.06 105.08 58.13
Financial Regulation 105.80 119.82 123.88 109.99 99.17 122.76
9. Trade policy 93.43 107.95 107.88 70.54 88.14 118.42
10. Sovereign debt, currency crises 116.59 202.91 101.42 164.86 122.14 215.20
DebtCeiling Relative Frequency 0.00 0.00 0.00 0.00 0.00 0.00
GovernmentShutdown Relative Frequency 0.00 0.00 0.00 0.00 0.00 0.00
Ratio: EPU w/DebtCeiling to wo/DebtCeiling 1.00 0.01 1.00 0.00 1.00 0.01
Ratio: EPU w/GovtShutdown to wo/GovtShutdown 1.00 0.01 1.00 0.00 1.00 0.02
Financial Stress Indicator 101.23 0.73 101.05 0.37 101.29 0.81

Table 9 reports the mean and standard deviation of the sentiment-based variables used in section 4.3 for the
full sample (1895:01-2017:12) and the period of analysis (1993:01-2017:12). The first one is the economic
policy uncertainty measure (EPU) from Baker et al. (2016). The sentiment-based variables are: Three Com-
ponent Index, News-Based Policy Uncertainty Index, News-Based Historical Economic Policy Uncertainty.
The categorical EPU considers a range of sub-indexes based solely in news data from Access World News
of over 2,000 US newspapers. The categories are: Economic Policy Uncertainty, Monetary policy, Fiscal
Policy (Taxes or Spending), Taxes, Government Spending, Health Care, National Security, Entitlement Pro-
grams, Regulation, Financial Regulation, Trade Policy, and Sovereign Debt, Currency Crises. Finally, is the
Financial Stress Indicator (FSI) for the U.S from Püttmann (2018).
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