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Motivation for Multiple Regression

Motivation:

• With a simple linear regression model we learned a model in which a single
independent variable x explains (or affect) a dependent variable y.

• If we add more factors to our model that are useful for explaining y, then more of
the variation in y can be explained.

We can build better models for predicting the dependent variable.
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Motivation for Multiple Regression

• Recall the log(wage) example.

Example: log(wage)

log(wage) = β0 + β1educ+ u

• Might be the case that there are factors in u affecting y.

• For instance intelligence could help to explain wage.
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Motivation for Multiple Regression

• Let’s use a proxy for it: IQ.

• By explicitly including IQ in the equation, we can take it out of the error term.

• Consider the following extension of the log(wage) example:

Example: log(wage) (extension)

log(wage) = β0 + β1educ+ β2IQ+ u
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The Model with 2 Independent Variable

Generally, we can write a model with two independent variables as:

y = β0 + β1x1 + β2x2 + u,

where

β0 is the intercept,
β1 measures the change in y with respect to x1, holding other factors fixed,
β2 measures the change in y with respect to x2, holding other factors fixed
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The Model with 2 Independent Variable

• In the model with two explanatory variables, the key assumption about how u is
related to x1 and x2 is:

E(u|x1, x2) = 0.

• For any values of x1 and x2 in the population, the average unobservable is equal
to zero.

• The value zero is not important because we have an intercept, β0 in the equation.
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The Model with 2 Independent Variable
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The Model with 2 Independent Variable

• In the wage equation, the assumption is E(u|educ, IQ) = 0.

• Now u no longer contains intelligence, and so this condition has a better chance of
being true.

• Recall that in the simple regression, we had to assume IQ and educ are unrelated
to justify leaving IQ in the error term.

• Other factors, such as workforce experience and “motivation,” are part of u.
Motivation is very difficult to measure. Experience is easier:

log(wage) = β0 + β1educ+ β2IQ+ β3exper + u.
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The Model with k Independent Variables

• The multiple linear regression model can be written in the population as

y = β0 + β1x1 + β2x2 + . . .+ βkxk + u

where,

β0 is the intercept,
β1 is the parameter associated with x1,
β2 is the parameter associated with x2, and so on.

• Contains k + 1 (unknown) population parameters.

• We call β1, ..., βk the slope parameters.
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The Model with k Independent Variables

• Now we have multiple explanatory or independent variables x′s.

• We still have one explained or dependent variable y.

• We still have an error term, u.
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The Model with k Independent Variables

• Advantage of multiple regression: it can incorporate fairly general functional
form relationships.

• Let lwage = log(wage):

lwage = β0 + β1educ+ β2IQ+ β3exper + β4exper2 + u,

so that exper is allowed to have a quadratic effect on lwage.

• Thus, x1 = educ, x2 = IQ, x3 = exper , and x4 = exper2. Note that x4 is a a
nonlinear function of x3.
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The Model with k Independent Variables

• The key assumption for the general multiple regression model is:

E(u|x1, ..., xk) = 0

• We can make this condition closer to being true by “controlling for” more variables.
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Mechanics and Interpretation of OLS

• Suppose we have x1 and x2 (k = 2) along with y.

• We want to fit an equation of the form:

ŷ = β̂0 + β̂1x1 + β̂2x2

given data {(xi1, xi2, yi) : i = 1, ..., n}.

• Sample size = n.
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Mechanics and Interpretation of OLS

Labels and indexing

Now the explanatory variables have two subscripts:
• i = observation number
• j = labels for particular variables (it is the second subscript - 1 and 2 in this case)

For example:

xi1 = educi , i = 1, 2, . . . , n
xi2 = IQi , i = 1, 2, . . . , n
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Derivation of the OLS Estimator - Least Squares Method

Least Squares Method

• As in the simple regression case, different ways to motivate OLS. We choose β̂0,
β̂1, and β̂2 (so three unknowns) to minimize the sum of squared residuals,

n∑
i=1

(yi − β̂0 − β̂1xi1 − β̂2xi2)2

• The case with k independent variables is easy to state: choose the k + 1 values β̂0,
β̂1, β̂2, ..., β̂k to minimize

n∑
i=1

(yi − β̂0 − β̂1xi1 − ...− β̂kxik)2
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Derivation of the OLS Estimator - Least Squares Method

• The OLS first order conditions (solved with multivariable calculus) are the
k + 1 linear equations in the k + 1 unknowns β̂0, β̂1, β̂2, ..., β̂k:

n∑
i=1

(yi − β̂0 − β̂1xi1 − ...− β̂kxik) = 0

n∑
i=1

xi1(yi − β̂0 − β̂1xi1 − ...− β̂kxik) = 0

n∑
i=1

xi2(yi − β̂0 − β̂1xi1 − ...− β̂kxik) = 0

... =
...

n∑
i=1

xik(yi − β̂0 − β̂1xi1 − ...− β̂kxik) = 0
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Derivation of the OLS Estimator - Least Squares Method

• As long as we add an assumption (MLR.3 - we will see in the next topic),we can
guarantee this system to have an unique solution.

• We will not find a closed solution to each βj , for j = 0, 1, 2, . . . , k.

• We can use matrix algebra to easily find the solution.

The OLS regression line is:

ŷ = β̂0 + β̂1x1 + β̂2x2 + ...+ β̂kxk
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Interpreting the OLS Regression Line

• The slope coefficients now explicitly have ceteris paribus interpretations.

• Consider k = 2:

ŷ = β̂0 + β̂1x1 + β̂2x2

Then

∆ŷ = β̂1∆x1 + β̂2∆x2

allows us to compute how predicted y changes when x1 and x2 change by any
amount.
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Interpreting the OLS Regression Line

• What if we “hold x2 fixed,” that is, its change is zero, ∆x2 = 0?

∆ŷ = β̂1∆x1 if ∆x2 = 0

In particular,

β̂1 = ∆ŷ
∆x1

if ∆x2 = 0

In other words, β̂1 is the slope of ŷ with respect to x1 when x2 is held fixed.
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Interpreting the OLS Regression Line

• Similarly,

∆ŷ = β̂2∆x2 if ∆x1 = 0

and

β̂2 = ∆ŷ
∆x2

if ∆x1 = 0

• We call β̂1 and β̂2 partial effects or ceteris paribus effects.
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Interpreting the OLS Regression Line

Terminology
We say that β̂0, β̂1, ..., β̂k are the OLS estimates from the regression

y on x1, x2, ..., xk

or

yi on xi1, xi2, ..., xik, i = 1, ..., n

when we want to emphasize the sample being used.
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Interpreting the OLS Regression Line

• Recall the wage example:

Example (Wage)

ŵage = −0.90 + 0.54 educ
n = 526, R2 = .16

• Then we did:

log(wage) = β0 + β1educ+ u
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Interpreting the OLS Regression Line

l̂wage = 0.58 + .08 educ
n = 526, R2 = .19

• Let’s write a multiple regression model:

log(wage) = β0 + β1educ+ β2exper + β3tenure+ u
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Interpreting the OLS Regression Line - R Output

Dependent variable:
lwage

educ 0.092∗∗∗
(0.007)

exper 0.004∗∗
(0.002)

tenure 0.022∗∗∗
(0.003)

Constant 0.284∗∗∗
(0.104)

Observations 526
R2 0.316
Adjusted R2 0.312
Residual Std. Error 0.441 (df = 522)
F Statistic 80.391∗∗∗ (df = 3; 522)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Interpreting the OLS Regression Line

l̂wage = .284 + .092 educ+ .004 exper + .022 tenure
n = 526, R2 = .32

Interpretation:

• .092 means that, holding exper and tenure fixed, another year of education is
predicted to increase log(wage) by .092, i.e., 9.2% increase in wage.

• Alternatively, we can take two people, A and B, with the same exper and tenure.
Suppose person B has one more year of schooling than person A. Then we predict
B to have a wage that is 9.2% higher.
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Holding Other Factors Fixed

What Does it Mean to “Hold Other Factors Fixed”?

• The power of multiple regression analysis is that it provides the ceteris paribus
interpretation, even though the data have not been collected in a ceteris paribus
fashion.

log(wage) = β0 + β1educ+ β2exper + β3tenure+ u

• Using the multiple regression model for wage as an example, it may seem that we
actually went out and sampled people with the same exper and tenure.

• It’s not the case. It’s a random sample.
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OLS Fitted Values and Residuals

Fitted Values and Residuals

• For each i,

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + ...+ β̂kxik

ûi = yi − ŷi
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OLS Fitted Values and Residuals

(1) The sample average of the residuals is zero, i.e.,
∑n

i=1 ûi = 0. This implies
ȳ = ŷ.

(2) Each explanatory variable is uncorrelated with the residuals in the sample. This
follows from the first order conditions. It implies that ŷi and ûi are also uncorrelated.

(3) The sample averages always fall on the OLS regression line:

ȳ = β̂0 + β̂1x̄1 + β̂2x̄2 + ...+ β̂kx̄k

That is, if we plug in the sample average for each explanatory variable, the predicted
value is the sample average of the yi.
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R2

... again
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Goodness-of-Fit

Goodness-of-Fit

• As with simple regression, it can be shown that

SST = SSE + SSR

where SST , SSE, and SSR are the total, explained, and residual sum of squares.
• We define the R-squared as before:

R2 = SSE

SST
= 1− SSR

SST
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Goodness-of-Fit

• Recall, 0 ≤ R2 ≤ 1

• Using the same set of data and the same dependent variable, the R2 can never
fall when another independent variable is added to the regression. And, it
almost always goes up, at least a little.

• This means that, if we focus on R2, we might include silly variables among the xj .

• Adding another x cannot make SSR increase. The SSR falls unless the coefficient
on the new variable is identically zero.
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Assumptions

Assumption MLR.1 (Linear in Parameters)
The model in the population can be written as

y = β0 + β1x1 + β2x2 + ...+ βkxk + u

where the βj are the population parameters and u is the unobserved error.
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Assumptions

Assumption MLR.2 (Random Sampling)
We have a random sample of size n from the population,
{(xi1, xi2, ..., xik, yi) : i = 1, ..., n}

• The data should be a representative sample from the population.
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The 4 Assumptions for Unbiasedness

Assumption MLR.3 (No Perfect Collinearity)
In the sample (and, therefore, in the population), none of the explanatory variables is
constant, and there are no exact linear relationships among them.
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The 4 Assumptions for Unbiasedness

If an independent variable in a Multiple Regression model is an exact linear
combination of the other independent variables, we say the model suffers from
perfect collinearity, and it cannot be estimated by OLS.

• Under perfect collinearity, there are no unique OLS estimators. R, Stata and other
regression packages will indicate a problem.

41 / 89



Motivation for
Multiple
Regression
The Model with k

Independent
Variables

Mechanics and
Interpretation
of OLS
Interpreting the OLS
Regression Line

The Expected
Value of the
OLS
Estimators

The Variance
of the OLS
Estimators
Estimating the Error
Variance

Efficiency of
OLS: The
Gauss-Markov
Theorem

The 4 Assumptions for Unbiasedness

• We must rule out the (extreme) case that one (or more) of the explanatory
variables is an exact linear function of the others.

Usually perfect collinearity arises from a bad specification of the population model.

• Assumption MLR.3 can only hold if n ≥ k + 1, that is, we must have at least as
many observations as we have parameters to estimate.
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The 4 Assumptions for Unbiasedness

• Suppose that k = 2 and x1 = educ, x2 = exper. If we draw our sample so that

educi = 2experi

for every i, then Assumption MLR.3 is violated.

• This is very unlikely unless the sample is small.

• In any realistic population there are plenty of people whose education level is not
twice their years of workforce experience.
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The 4 Assumptions for Unbiasedness

Do not include the same variable in an equation that is measured in different units.

Example: CEO Salary
In a CEO salary equation, it would make no sense to include firm sales measured in
dollars along with sales measured in millions of dollars. There is no new information
once we include one of these.
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The 4 Assumptions for Unbiasedness

Be careful with functional forms! Suppose we start with a constant elasticity model
of family consumption:

log(cons) = β0 + β1 log(inc) + u

• How might we allow the elasticity to be nonconstant, but include the above as a
special case? The following does not work:

log(cons) = β0 + β1 log(inc) + β2 log(inc2) + u

because log(inc2) = 2 log(inc), that is, x2 = 2x1, where x1 = log(inc).
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The 4 Assumptions for Unbiasedness

• Instead, we probably mean something like

log(cons) = β0 + β1 log(inc) + β2[log(inc)]2 + u

which means x2 = x2
1. With this choice, x2 is an exact nonlinear function of x1, but

this (fortunately) is allowed in MLR.3.
• Tracking down perfect collinearity can be harder when it involves more than two
variables.
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The 4 Assumptions for Unbiasedness

Example: Vote

voteA = β0 + β1expendA+ β2expendB + β3totexpend+ u

where expendA is campaign spending by candidate A, expendB is spending by
candidate B, and totexpend is total spending. All are in thousands of dollars.
Mechanically, the problem is that, by definition,

expendA+ expendB = totexpend

which, of course, will also be true for any sample we collect.
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The 4 Assumptions for Unbiasedness

• One of the three variables has to be dropped.

• The model makes no sense from a ceteris paribus perspective. For example, β1 is
suppose to measure the effect of changing expendA on voteA, holding fixed
expendB and totexpend. But if expendB and totexpend are held fixed, expendA
cannot change!

• We would probably drop totexpend and just use the two separate spending
variables.
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The 4 Assumptions for Unbiasedness

Key Point
Assumption MLR.3 does not say the explanatory variables have to be uncorrelated in
the population or sample.

Nor does it say they cannot be “highly” correlated.

MLR.3 rules out perfect correlation in the sample, that is, correlations of ±1.

• Multiple regression would be useless if we had to insist x1, ..., xk were
uncorrelated in the sample (or population)!

• If the xj were all pairwise uncorrelated, we could just use a bunch of simple
regressions.
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The 4 Assumptions for Unbiasedness

MLR.1: y = β0 + β1x1 + β2x2 + ...+ βkxk + u
MLR.2: random sampling from the population
MLR.3: no perfect collinearity in the sample

• The last assumption ensures that the OLS estimators are unique and can be
obtained from the first order conditions (minizing the sum of squared residuals).

• We need a final assumption for unbiasedness.
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The 4 Assumptions for Unbiasedness

Assumption MLR.4 (Zero Conditional Mean)

E(u|x1, x2, ..., xk) = 0 for all (x1, ..., xk)

• Remember, the real assumption is E(u|x1, x2, ..., xk) = E(u): the average value
of the error does not change across different slices of the population defined by
x1, ..., xk.

• Setting E(u) = 0 essentially defines β0.
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The 4 Assumptions for Unbiasedness

If u is correlated with any of the xj , MLR.4 is violated.

• When Assumption MLR.4 holds, we say x1, ..., xk are exogenous explanatory
variables.

• If xj is correlated with u, we often say xj is an endogenous explanatory
variable.
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Unbiasedness of OLS

Theorem: Unbiasedness of OLS
Under Assumptions MLR.1 through MLR.4,

E(β̂j) = βj , j = 0, 1, 2, ..., k

for any values of the population parameters βj .. In other words, the OLS estimators
are unbiased estimators of the population parameters.
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Topics

1 Motivation for Multiple Regression
The Model with k Independent Variables

2 Mechanics and Interpretation of OLS
Interpreting the OLS Regression Line

3 The Expected Value of the OLS Estimators

4 The Variance of the OLS Estimators
Estimating the Error Variance

5 Efficiency of OLS: The Gauss-Markov Theorem
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Homoskedasticity

• So far, we have assumed

MLR.1: y = β0 + β1x1 + β2x2 + . . .+ βkxk + u
MLR.2: random sampling from the population
MLR.3: no perfect collinearity in the sample
MLR.4: E(u|x1, x2, ..., xk) = 0

• Under MLR.3 we can compute the OLS estimates in our sample.

• The other assumptions then ensure that OLS is unbiased (conditional on the
outcomes of the explanatory variables).
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Homoskedasticity

• Now, our goal is to find V ar(β̂j).

• In order to do that we need to add another assumption: homoskedasticity
(constant variance).

• Why should we add another assumption?
1 Imposing this assumption, the OLS estimator has an important

feature/property: efficiency.
2 We can obtain simple formulas with it too.
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Homoskedasticity

Assumption MLR.5 (Homoskedasticity)
The variance of the error, u, does not change with any of x1, x2, ..., xk:

V ar(u|x1, x2, ..., xk) = V ar(u) = σ2

• What it is saying is that the variance of the unobservable, u, conditional on
x1, x2, ..., xk is constant.
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Homoskedasticity

• The homoskedasticity assumption is common in cross-section analysis. However
there are many problems where it does not hold.

• For time series hardly (!) you can make this assumption.

• When V ar(u|x1, x2, ..., xk) depends on xj , the error term exhibits
heteroskedasticity (nonconstant variance)

• Since V ar(u|x1, x2, ..., xk) = V ar(y|x1, x2, ..., xk), we have heteroskedasticity
when V ar(y|x1, x2, ..., xk) is a function of x.
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Homoskedasticity

• The homoskedasticity assumption plays no role in showing that β̂j are unbiased.

• σ2 is the unconditional variance of u.

• σ2 : error variance or disturbance variance.

•
√
σ2 = σ : standard deviation of the error.
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Homoskedasticity

• Assumptions MLR.1 and MLR.4 imply

E(y|x1, x2, ..., xk) = β0 + β1x1 + ...+ βkxk

and when we add MLR.5,

V ar(y|x1, x2, ..., xk) = V ar(u|x1, x2, ..., xk) = σ2

• Assumptions MLR.1 through MLR.5 are called the Gauss Markov assumptions.
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Homoskedasticity

Gauss Markov assumptions
MLR.1: y = β0 + β1x1 + β2x2 + . . .+ βkxk + u
MLR.2: random sampling from the population
MLR.3: no perfect collinearity in the sample
MLR.4: E(u|x1, x2, ..., xk) = 0
MLR.5: V ar(u|x1, x2, ..., xk) = V ar(u) = σ2
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The Variance of OLS

Recall, our goal is to find V ar(β̂j)
(We will not find V ar(β̂0) - which has different formula)

• Let’s define the total variation in xj in the sample:

SSTj =
n∑

i=1
(xij − x̄j)2
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The Variance of OLS

Notice that the R-squared can also be understood as the squared correlation
between to variables.

• Let’s define R-squared R2
j :

a measure of correlation between xj and the other explanatory variables (in the
sample) is the R-squared from the regression:

xij on xi1, xi2, ..., xi,j−1, xi,j+1, ..., xik

We are regressing xj on all of the other explanatory variables.
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Theorem: Sampling Variances of OLS Slope Estimators
Under Assumptions MLR.1 to MLR.5, and condition on the values of the
explanatory variables in the sample,

V ar(β̂j) = σ2

SSTj(1−R2
j )

, j = 1, 2, ..., k.

• Clearly, all five Gauss-Markov assumptions are needed to ensure this formula is
correct.
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The Variance of OLS

• If,

V ar(u|x1, x2, . . . , xk) = f(xj)

• Example: On the white board.

• This violates MLR.5, and the standard variance formula is generally incorrect for
all OLS estimators, not just V ar(β̂j).
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The Variance of OLS

• Is R2
j = 1 allowed? Answer: No.

• Any value 0 ≤ R2
j < 1 is permitted.

• Multicollinearity As R2
j gets closer to one, xj is more linearly related to the other

independent variables.
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The Variance of OLS

• The variance

V ar(β̂j) = σ2

SSTj(1−R2
j )

has three components:
• σ2

• SSTj

• 1−R2
j
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The Components of the OLS Variances

V ar(β̂j) = σ2

SSTj(1−R2
j )

Factors Affecting V ar(β̂j):

(1) If the error variance σ2 ↓,
⇒ V ar(β̂j) ↓ ⇒ V ar(u|X) ↓ adding more explanatory variables
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The Components of the OLS Variances

V ar(β̂j) = σ2

SSTj(1−R2
j )

Factors Affecting V ar(β̂j):

(2) If the SSTj ↑,
V ar(β̂j) ↓ ⇒ the higher is the sample variation in xj the better (increase the
sample size n: SSTj is roughly a linear function of n).
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The Components of the OLS Variances

V ar(β̂j) = σ2

SSTj(1−R2
j )

Factors Affecting V ar(β̂j):

(3) As R2
j → 1,

V ar(β̂j)→∞⇒ R2
j measures how linearly related xj is to the other explantory

variables.
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The Components of the OLS Variances

• We get the smallest variance for β̂j when R2
j = 0:

V ar(β̂j) = σ2

SSTj
,

• If xj is unrelated to all other independent variables ⇒ easier to estimate its ceteris
paribus effect on y.

• R2
j ≈ 0 (uncommon).

• R2
j ≈ 1 (more common) ⇒ the estimate of βj is not precise.
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The Components of the OLS Variances

Figure: Graph of V ar(β̂1) as a function of R2
1
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The Components of the OLS Variances

Recall,

Multicollinearity: R2
j close to one. (problem of ...)

Perfect Collinearity: R2
j = 1 (not allowed under MLR.1 - MLR.4)

• Does multicollinearity (high correlation among two or more independent variables)
violates any of the Gauss-Markov assumptions (including MLR.3.)?

Answer: No. Multicollinearity does not cause the OLS estimators to be biased. We
still have E(β̂j) = βj .
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Estimating the Error Variance

Goal: We need to estimate σ2.

• Problem: we don’t observe ui.

• We could use our residuals ûi (that we obtain when we run a regression) to find σ2.
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Estimating the Error Variance

• Degrees of freedom: With n observations and k + 1 parameters, we only have

df = n− (k + 1)

degrees of freedom. Recall we lose the k + 1 df due to k + 1 restrictions on the OLS
residuals:

n∑
i=1

ûi = 0

n∑
i=1

xij ûi = 0, j = 1, 2, ..., k
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Estimating the Error Variance

Estimator of σ2

σ̂2 =
∑n

i=1 û
2
i

(n− k − 1) = SSR

df

• Regression packages (e.g. R) reports:
•
√
σ̂2 = σ̂

• Names: Residual std. error, std. error of the regression, root mean squared
error, standard error of the estimate, root mean squared error

Note that SSR falls when a new explanatory variable is added, but df falls, too. So
σ̂ can increase or decrease when a new variable is added in multiple regression.
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Estimating the Error Variance

Theorem: Unbiased Estimation of σ2

Under the Gauss-Markov assumptions MLR.1 through MLR.5

E(σ̂2) = σ2

i.e., σ̂2 is an unbiased estimator of σ2.
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Standard Errors of the OLS Estimators

Goal: Now we want to find the standard error of each β̂j .

Standard deviation of β̂j

sd(β̂j) = σ√
SSTj(1−R2

j )

Standard error of β̂j

se(β̂j) = σ̂√
SSTj(1−R2

j )
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Standard Errors of the OLS Estimators

Dependent variable:
lwage

educ 0.092∗∗∗
(0.007)

exper 0.004∗∗
(0.002)

tenure 0.022∗∗∗
(0.003)

Constant 0.284∗∗∗
(0.104)

Observations 526
R2 0.316
Adjusted R2 0.312
Residual Std. Error 0.441 (df = 522)
F Statistic 80.391∗∗∗ (df = 3; 522)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Topics

1 Motivation for Multiple Regression
The Model with k Independent Variables

2 Mechanics and Interpretation of OLS
Interpreting the OLS Regression Line

3 The Expected Value of the OLS Estimators

4 The Variance of the OLS Estimators
Estimating the Error Variance

5 Efficiency of OLS: The Gauss-Markov Theorem
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Efficiency of OLS: The Gauss-Markov Theorem

Theorem: Gauss-Markov
Under Assumptions MLR.1 through MLR.5 (Gauss-Markov assumptions), the OLS
estimators β̂0, β̂1, ..., β̂k are the best linear unbiased estimators (BLUEs)

• To understand each component of the acronym “BLUE” let’s start from the end.
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E (estimator): It is a rule that can be applied to any sample of data to produce an
estimate.
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U (unbiased): β̂OLS
j is an unbiased estimator of the true parameter, i.e., βj .

⇒ E(β̂OLS
j ) = βj for any β0, β1, β2, . . . , βk

(conditional on {(xi1, ..., xik) : i = 1, ..., n}).
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L (linear): The estimator is a linear function of {yi : i = 1, 2, ..., n}, but it can be a
nonlinear function of the explanatory variables., i.e.,

β̃j =
n∑

i=1
wijyi

where the {wij : i = 1, ..., n} are any functions of {(xi1, ..., xik) : i = 1, ..., n}.

• The OLS estimators can be written in this way.
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B (best): This means smallest variance (which makes sense once we impose
unbiasedness).

V ar(β̂j) ≤ V ar(β̃j) all j

usually the inequality is strict. (conditional on the explanatory variables in the
sample).

• If we do not impose unbiasedness, then we can use silly rules – such as β̃j = 1
always – to get estimators with zero variance.
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• If the Gauss-Markov assumptions hold, and we insist on unbiased estimators that
are also linear functions of {yi : i = 1, 2, ..., n}, then

OLS delivers the smallest possible variances.

• We are not looking nonlinear functions of {yi : i = 1, 2, ..., n}.
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• Remember: Failure of MLR.5 does not cause bias in the β̂j , but it does have two
consequences:

1. The usual formuals for V ar(β̂j), and therefore for se(β̂j), are wrong.

2. The β̂j are no longer BLUE.

89 / 89


	Motivation for Multiple Regression
	The Model with k Independent Variables

	Mechanics and Interpretation of OLS
	Interpreting the OLS Regression Line

	The Expected Value of the OLS Estimators
	The Variance of the OLS Estimators
	Estimating the Error Variance

	Efficiency of OLS: The Gauss-Markov Theorem

