

Department of Economics

Final

Econ 526 - Introduction to Econometrics

May/12/2020 Instructor: Caio Vigo Pereira

Name:

SECTION A - MULTIPLE CHOICE

- 3% 1. Consider any multiple linear regression. It is known that under the Gauss-Markov assumptions, the OLS estimators are BLUE. What "B" refers to?
 - A. That $E(\hat{\beta}_i^{OLS}) = \beta_j$ for any $\beta_0, \beta_1, \beta_2, \dots, \beta_k$.
 - B. That the OLS estimators have the smallest variance among the unbiased estimators.
 - C. That the OLS estimators have the smallest variance among all possible estimators.
 - D. That the OLS estimators are consistent.

 $\frac{3\%}{2}$ 2. For the past 3 months you verified that, most of the time (but not always) that the price of stock A raised, the price of stock B raised, and most of the time (but not always) the price of stock A dropped, the price of stock B dropped. Then, based on your data, what is the $\widehat{\text{Corr}}(A, B)$?

A. $-1 < \widehat{\text{Corr}}(A, B) < 0$ B. 1 C. 0 D. $0 < \widehat{\text{Corr}}(A, B) < 1$

3% 3. Assume that the **Classical Linear Model (CLM)** assumptions hold. What is the distribution of $\frac{\beta_j - \beta_j}{se(\hat{\beta}_j)}$?

- A. $F_{(q,n-k-1)}$ B. $N(0,k^2)$
- C. t_{df} , where df = n k 1
- D. None of the above

3% 4. The ______ is used to compare across models that have different numbers of explanatory variables, but where one is not a special case of the other (i.e., nonnested models).
 A. R²

- B. t test
- C. Adjusted R^2
- D. F test
- 3%

5. Consider a multiple linear regression model such as $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$. Evaluate the statements below and choose the correct one.

A. Under the Gauss-Markov assumptions, we have $u \sim N(0,1)$ and $Var(\hat{\beta}_1) = \frac{\sigma}{SST_1(1-R_1^2)}$.

B. The Gauss-Markov assumptions do NOT restrict the distribution of the error term u, but it requires the error term u to be independent of the explanatory variables.

C. Under the *Classical Linear Model* assumptions, the error term u is normally distributed with mean 0 and variance σ^2 .

D. The Classical Linear Model requires the independent variables to have zero or no collinearity.

 $\frac{3\%}{}$ 6. Which of the following can cause the usual OLS t statistics to be invalid, i.e., not to have t distributions under the null hypothesis?

- A. Heteroskedasticity.
- B. Multicollinearity.
- C. Homoskedasticity.
- D. Exogenous variables.
- 3% 7. Evaluate the statements below and choose the correct one.
 - A. Whenever we have heteroskedasticity, the OLS estimator still is unbiased and efficient.
 - B. We have homoskedasticity when the variance of the dependent variable is constant.
 - C. In order to avoid the issues of identifying heteroskedasticity, we should always use heteroskedasticity-robust standard errors for any sample size when doing inference.
 - D. None of the above.

SECTION B - TRUE OR FALSE

- 2%
 1. We say that an estimator is unbiased if it has the smallest variance among all other estimators, and we say that an estimator is consistent when it converges in probability to the true parameter.
 O True O False
- 2% 2. Let X and Y be two independent random variables. Then Corr(X, Y) = 0. \bigcirc True \bigcirc False
- 3. Let Y_1, Y_2, \ldots, Y_n be i.i.d. random variables with mean μ . Consider the following estimator: $W = \sum_{i=1}^3 \frac{1}{3}Y_i$. Then, W is a biased estimator of μ . \bigcirc True \bigcirc False
- 4. Let Y_1, Y_2, \ldots, Y_n be i.i.d. random variables with mean μ . The Law of Large Numbers (LLN) states that \bar{Y} is an unbiased and efficient estimator of μ . \bigcirc True \bigcirc False
- 2% 5. The following regression model: $log(y) = \beta_0 + \beta_1 x_1 + u$ is also known as constant elasticity model. \bigcirc True \bigcirc False
- 2% 6. Consider the following models:

Model 1: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$ Model 2: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$

Then, $R^2_{model2} \ge R^2_{model1}$ and $SST_{model1} \le SST_{model2}$. \bigcirc True \bigcirc False

- 2% 7. Exogenous explanatory variables is not a necessary assumption in order to the OLS estimator to be unbiased, however the assumption $E(u|x_1, \ldots, x_k) = 0$ is necessary. \bigcirc True \bigcirc False
- $\begin{array}{c|c} \underline{2\%} & 9. \text{ Given the } t \text{ statistic, the } p \text{-value provides the smallest significance level in order to reject the null hypothesis.} \\ & \bigcirc \text{ True } & \bigcirc \text{ False} \end{array}$
- 2% 11. Consider any multiple linear regression. Knowing that you fail to reject H_0 for a specific parameter at 1% significance level, then you must fail to reject the H_0 at 2% significance level, but not necessarily at 0.1% significance level. \bigcirc True \bigcirc False
- 2% 12. Consider the following multiple linear regression model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$$

Assume that the 95% confidence interval for β_1 is [-0.254, 0.878], and for β_2 is [-0.985, -0.055]. Then, $\hat{\beta}_1$ and $\hat{\beta}_2$ are statistically different from 0 at 5% significance level. \bigcirc True \bigcirc False

3%

3%

SECTION C - SHORT ANSWER

Consider a data set containing a random sample with mortgage loans to individuals in a given year. The data set consists of the following variables (variable's name and description):

loanamt	loan amount for a mortgage in thousands
appinc	applicant income, \$1000s
unit	number of units in property
married	=1 if applicant married
atotinc	total monthly income
price	purchase price
liq	liquid assets
cosign	is there a cosigner
netw	net worth
white	=1 if applicant white
mortg	credit history on previous mortgage payments
male	=1 if applicant male

1. (This question refers to Regression (A)) Consider the following regression:
 [Notice that the significance level "stars" - *, **, *** - were suppressed in this output]:

	Dependent variable:
-	loanamt
atotinc	0.0013 (0.0002)
liq	0.00003
mortg	0.6753 (1.8140)
price	0.4914 (0.0100)
Constant	38.6748 (3.8478)
Observations R2 Adjusted R2 Besidual Std. Error	1,989 0.7015 0.7009 44.0345 (df = 1984)
F Statistic 1	(df = 4; 1984)

REGRESSION (A)

- (a) State the null hypothesis that credit history on previous mortgage payments has no *ceteris paribus* effect on the loan amount for a mortgage that an applicant obtains. State the alternative hypothesis that there is an effect (i.e., either positive or negative)?
- (b) Test the hypothesis stated above at the 5% significance level. Find the critical value. [Two lines answer]

3%

3%

3%

3%

3%

3%

3%

- 3% (c) Do you reject the null hypothesis? Explain the statistical significance of your test at 5% significance level. Would you include *mortg* in a final model explaining the loan amount for a mortgage? Explain. [Three lines answer]
 - (d) Find the 99% confidence interval for β_{price} . Is the variable *price* statistically significant at 1% significance level? [Three lines answer]
 - 2. (This question refers to **Regression (B)**) Consider the following (additional) regression:

	Dependent variable:						
	loanamt						
atotinc	0.0009*** (0.0003)						
liq	0.00003** (0.00001)	Coefficients:	-imate (Std. Error	t value	Pr(>1+1)	
mortg	0.4850 (1.8105)	(Intercept) 2.6 atotinc 9.2	71e+01 17e-04		5.804 3.534	7.52e-09 0.000418 0.033584	***
price	0.4865*** (0.0101)	mortg 4.8 price 4.8	50e-01 55e-01	1.810e+00 1.008e-02 1.386e-02	0.268 48.260	0.788807	***
appinc	0.0498*** (0.0139)	unit 9.83 Signif. codes:		2.252e+00 ' 0.001 '**		1.33e-05 '*' 0.05 '	
unit	9.8318*** (2.2516)	-					
Constant	26.7082*** (4.6017)						
Dbservations R2 Adjusted R2 Residual Std. Error	1,985 0.7060 0.7052 43.7525 (df = 1978)						
F Statistic	43.7525 (df = 1978) 791.8221*** (df = 6; 1978)						
Note:	*p<0.1; **p<0.05; ***p<0.01						

REGRESSION (B)

- (a) Which variable(s) is/are statistically significant at 1% significance level. List their names. [*Hint: No computation required.*]
 (b) Which variable(s) is/are statistically significant at 10% significance level. List their names. [*Hint: No computation required.*]
 (c) Using the data from both regressions, state the null and alternative hypothesis that the applicant's income and number of units in the property are jointly statistically significant. [Two lines answer]
 (d) Write down the unrestricted and the restricted model. [Two lines answer]
 (e) Test the hypothesis stated above at the 5% significance level. Find the critical value. [Two lines answer]
 (f) Do you reject the null hypothesis? Explain the statistical significance of your test at 5% significance levels.
- [*Hint: Don't forget to use a specific word when explaining the statistical significance.*] [Two lines answer]

3%

3%

3%

3%

3%

	Dependent variable:
	log(loanamt)
mortg	-0.0756***
	(0.0183)
appinc	0.0019***
	(0.0001)
married	0.1563***
	(0.0215)
Constant	4.7139***
	(0.0387)
Observations	1,986
R2	0.1583
Adjusted R2	0.1570
0	0.4477 (df = 1982)
F Statistic	124.2273*** (df = 3; 1982)
Note:	*p<0.1; **p<0.05; ***p<0.01

REGRESSION (C)

- 3. (This question refers to **Regression** (C)). Consider the following regression:
- (a) State the null and alternative hypothesis of the F statistic for overall significance of a regression. Do you reject the null hypothesis? Explain the statistical significance of your test at 1% significance level. [Four lines answer]
 - (b) What is the base group (or benchmark group or reference group) of this regression? What is the estimated intercept for this group? What is the estimated intercept for the other group? Be clear in your answer. Provide the name of the group followed by its estimate. [Three lines answer]
- (c) What is the **EXACT** estimated average difference in loan amount between applicants who are married or those who are not, controlling for income and credit history on previous mortgage payments? [One line answer]
- (d) All other factors being equal, is there any statistical evidence that being *married* impacts the loan amount an applicant obtains? Consider three different significance levels: 1%, 5% and 10% (significance level) in your answer. [Three lines answer]
- (e) Now, suppose you create a new variable called *not_married*, which is defined as *not_married* = 1 married. Then you run the following model using the same sample:

 $log(loanamt) = \beta_0 + \beta_1 mortg + \beta_2 appinc + \beta_3 not_married + u$

What is the new estimate for β_1 ? What is the new estimate for β_3 ? What is the new R^2 ? Provide a short explanation for your answer. [Four lines answer]

Name:

5%

4. Assume you have a random sample and consider the following model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$$

Before running the OLS regression of this model, you decided to run the following regression using only the independent variables above.

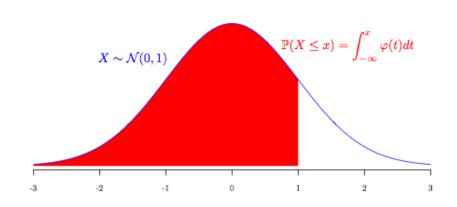
$$\widehat{x_2} = 2 + 3 \ x_1$$

 $n = 8,985, \ R^2 = 1$

Explain the results of this regression and how they are related when you run the full regression model. [Four lines answer]

5% 5. [This question is not related to the previous one]

Assume that the Gauss-Markov assumptions hold. Consider the following model:


$$y = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \beta_3 z_3 + u$$

Before running the OLS regression of this model, you decided to run the following regression using only the independent variables above.

$$\hat{z}_3 = -5.8 + 2.174 \ z_1 + 5.428 \ z_2$$

 $n = 12,856, \ R^2 = .978$

Explain what the results of this regression tell us about the sampling variance of $\hat{\beta}_3$ when you regress the full model. Remember that there is a specific term we estimate for this (sampling) variability or spread. [Five lines answer]

Standard Normal Distribution

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

			S	ignificance Lev	el	
1-Tailed:		.10	.05	.025	.01	.005
2-Tailed:		.20	.10	.05	.02	.01
	1	3.078	6.314	12.706	31.821	63.657
	2	1.886	2.920	4.303	6.965	9.925
	3	1.638	2.353	3.182	4.541	5.841
	4	1.533	2.132	2.776	3.747	4.604
	5	1.476	2.015	2.571	3.365	4.032
	6	1.440	1.943	2.447	3.143	3.707
	7	1.415	1.895	2.365	2.998	3.499
	8	1.397	1.860	2.306	2.896	3.355
	9	1.383	1.833	2.262	2.821	3.250
	10	1.372	1.812	2.228	2.764	3.169
_	11	1.363	1.796	2.201	2.718	3.106
D e	12	1.356	1.782	2.179	2.681	3.055
g	13	1.350	1.771	2.160	2.650	3.012
r	14	1.345	1.761	2.145	2.624	2.977
e	15	1.341	1.753	2.131	2.602	2.947
e s	16	1.337	1.746	2.120	2.583	2.921
	17	1.333	1.740	2.110	2.567	2.898
0	18	1.330	1.734	2.101	2.552	2.878
f	19	1.328	1.729	2.093	2.539	2.861
F	20	1.325	1.725	2.086	2.528	2.845
r	21	1.323	1.721	2.080	2.518	2.831
e e	22	1.321	1.717	2.074	2.508	2.819
d	23	1.319	1.714	2.069	2.500	2.807
0	24	1.318	1.711	2.064	2.492	2.797
m	25	1.316	1.708	2.060	2.485	2.787
	26	1.315	1.706	2.056	2.479	2.779
	27	1.314	1.703	2.052	2.473	2.771
	28	1.313	1.701	2.048	2.467	2.763
	29	1.311	1.699	2.045	2.462	2.756
	30	1.310	1.697	2.042	2.457	2.750
	40	1.303	1.684	2.021	2.423	2.704
	60	1.296	1.671	2.000	2.390	2.660
	90	1.291	1.662	1.987	2.368	2.632
	120	1.289	1.658	1.980	2.358	2.617
	∞	1.282	1.645	1.960	2.326	2.576

Critical Values of the t-distribution

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.

		Numerator Degrees of Freedom										
		1	2	3	4	5	6	7	8	9	10	
	10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	
D	11	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	
e	12	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	
n o	13	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	
m	14	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	
i	15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	
n	16	8.53	6.23	5.29	4.77	4.44	4.20	4.03	3.89	3.78	3.69	
a t	17	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	
0	18	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	
r	19	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	
	20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	
D e	21	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	
g	22	7.95	5.72	4.82	4.31	3.99	3.76	3.59	3.45	3.35	3.26	
r	23	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	
е	24	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	
e s	25	7.77	5.57	4.68	4.18	3.85	3.63	3.46	3.32	3.22	3.13	
3	26	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	
0	27	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	
f	28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	
F	29	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	
r	30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	
е	40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	
е	60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	
d o	90	6.93	4.85	4.01	3.54	3.23	3.01	2.84	2.72	2.61	2.52	
m	120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	
	∞	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	

1% Critical Values of the F Distribution

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.

		Numerator Degrees of Freedom										
		1	2	3	4	5	6	7	8	9	10	
D	10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	
e	11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	
n	12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	
Ο	13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	
m	14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	
l n	15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	
n a	16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	
ť	17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	
ο	18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	
r	19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	
D	20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	
D e	21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	
g	22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	
r	23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	
е	24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	
е	25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	
S	26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	
ο	27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	
f	28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	
	29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	
F	30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	
r	40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	
e e	60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	
d	90	3.95	3.10	2.71	2.47	2.32	2.20	2.11	2.04	1.99	1.94	
ο	120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	
m	∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	

5% Critical Values of the F Distribution

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.