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e We have been studying variables (dependent and independent) with quantitative
meaning.

e Now we need to study how to incorporate qualitative information in our
framework (Multiple Regression Analysis).

e How do we describe binary qualitative information? Examples:

® A person is either male or female. ’ binary or dummy variable‘

A worker belongs to a union or does not. ‘ binary or dummy variable‘

A firm offers a 401(k) pension plan or it does not. ’ binary or dummy variable‘

the race of an individual. ‘multiple categories variable‘

e the region where a firm is located (N, S, W, E). ’ multiple categories variable‘




w Describing Qualitative Information

Multiple

Regression

Analysis with . . . .
Qualitative e We will discuss only binary variables.

Information

e Binary variable (or dummy variable) are also called a zero-one variable to
emphasize the two values it takes on.

e Therefore, we must decide which outcome is assigned zero, which is one.
e Good practice: to choose the variable name to be descriptive.

e For example, to indicate gender, female, which is one if the person is female, zero
if the person is male, is a better name than gender or sex (unclear what gender = 1
corresponds to).



w Describing Qualitative Information

Multiple

Regreedn e Consider the following dataset:

Analysis with

Qualitative

Information head(wagel_dummy)
## wage lwage educ exper tenure female married
## 1 3.10 1.131402 11 2 0 1 0
## 2 3.24 1.175573 12 22 2 1 1
## 3 3.00 1.098612 11 2 0 0 0
## 4 6.00 1.791759 8 44 28 0 1
## 5 5.30 1.667707 12 7 2 0 1
## 6 8.75 2.169054 16 9 8 0 1

tail (wagel_dummy)

## wage lwage educ exper tenure female married
## 521 5.65 1.7316556 12 2 0 0 0
## 522 15.00 2.7080503 16 14 2 1 1
## 523 2.27 0.8197798 10 2 0 1 0
ty ## 524 4.67 1.5411590 15 13 18 0 1
## 525 11.56 2.4475510 16 5 1 0 1
## 526 3.50 1.2527629 14 5 4 1 0
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e For distinguishing different categories, any two different values would work.
Example: 5 or 6

e 0 and 1 make the interpretation in regression analysis much easier.
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® A Single Dummy Independent Variable

Dummy Variable Coefficients with log(y) as the Dependent Variable
Dummy Variables for Multiple Categories



w A Single Dummy Independent Variable

e What would it mean to specify a simple regression model where the explanatory
variable is binary? Consider

A Single
Dummy

Independent wage = ﬂ() + 50f€male +u
Variable
where we assume SLR.4 holds:
E(u|female) =0

e Therefore,

E(wage|female) = By + oo female



w A Single Dummy Independent Variable

A Single e There are only two values of female, 0 and 1.

Indapendent

\ELELIS
E(wage|female = 0)= o+ d-0=[p
E(wage|female = 1)= o+ do-1= 5o+ do

In other words, the average wage for men is Sy and the average wage for women is

Bo + do.



w A Single Dummy Independent Variable

A Single e We can write

Dummy
Independent
Variable

0o = E(wage|female = 1) — E(wage|female = 0)

as the difference in average wage between women and men.

e So Jg is not really a slope.

It is just a difference in average outcomes between the two groups.




w A Single Dummy Independent Variable

e The population relationship is mimicked in the simple regression estimates.
A Single
Dummy
Independent
\ELELIS

By = wage,,
fo+d0 = wage;
b = wWage ; — Wage,y,

where wage,,, is the average wage for men in the sample and wage; is the average
wage for women in the sample.



w A Single Dummy Independent Variable

## Total Observations in Table: 526

##
##

A Single ## | 0| 1]

Dummy ## | | I

Independent ##t | 274 | 252 |

Variable ## | 0.521 | 0.479 |
## | | I
stargazer(wagel_dummy, type='text')
##
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
##
## wage 526 5.896 3.693 0.530 3.330 6.880 24.980
## lwage 526 1.623 0.532 -0.635 1.203 1.929 3.218
## educ 526 12.563 2.769 0 12 14 18
## exper 526 17.017 13.572 1 5 26 51
## tenure 526 5.105 7.224 0 0 7 44

ty ## female 526 0.479 0.500 0 0 1 1

## married 526 0.608 0.489 0 0 1 1

##




Dummy Independent Variable

Dependent variable:

A Single wage

Dummy

Independent female -2.512%x%

Variable (0.303)
Constant T .099%%*

(0.210)

Observations 526
R2 0.116
Adjusted R2 0.114
Residual Std. Error 3.476 (df = 524)
F Statistic 68.537*x*x (df = 1; 524)

Note: *p<0.1; *%p<0.05; **%p<0.01



w A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

e The estimated difference is very large. Women earn about $2.51 less than men per
hour, on average.

o Of course, there are some women who earn more than some men; this is a
difference in averages.



w A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

e This simple regression allows us to do a simple comparison of means test. The
null is

HO:/"f:,um

where pi; is the population average wage for women and (i, is the population
average wage for men.

e Under MLR.1 to MLR.5, we can use the usual ¢ statistic as approximately valid (or
exactly under MLR.6):

tfemale = —8.28

which is a very strong rejection of Hy.



w A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

e The estimate 8y = —2.51 does not control for factors that should affect wage,
such as workforce experience and schooling.

e If women have, on average, less education, that could explain the difference in
average wages.

e If we just control for education, the model written in expected value form is

E(wagel| female, educ) = By + do female + [1educ

where now §y measures the gender difference when we hold fixed exper.



w A Single Dummy Independent Variable

A Single
Dummy
Independent

Variable e Another way to write dg:

do = E(wage|female, educ) — E(wage|male, educ)

where educerg is any level of experience that is the same for the woman and man.



w A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

Dependent variable:

wage
female =2.273%%%
(0.279)
educ 0.506%%*
(0.050)
Constant 0.623
(0.673)
Observations 526
R2 0.259
Adjusted R2 0.256

Residual Std.

F Statistic

Error

3.186 (df = 523)
91.315%** (df = 2; 523)

Note:

*P<O,1; **p<0,05; ***p(0.0l



w A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

y

e Notice that there is still a difference of about $2.27 (now it's smaller, but still large
and statistically significant).

e The model imposes a common slope on educ for men and women, (31, estimated
to be .506 in this example.

e Recall, that the intercept is the only number that differ both categories (men and
women).

e The estimated difference in average wages is the same at all levels of experience:
$2.27.



Dummy Independent Variable

Figure: Graph of wage = By + dg female + [reduc for §g < 0
A Single wage
Dummy
Independent

Variable

men: wage = B, + ,educ

\

women
wage = (B, + &,) + B8, educ

slope = B,

educ



w A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

e Notice that we can add other variables.

Dependent variable:

wage
female —2.156%xx
(0.270)
educ 0.603%x*x
(0.051)
exper 0.064%%*
(0.010)
Constant -1.734%*
(0.754)
Observations 526
R2 0.309
Adjusted R2 0.305
Residual Std. Error 3.078 (df = 522)
F Statistic 77.920%x* (df = 3; 522)
Note: *p<0.1; #*p<0.05; #++p<0.01

e Note that if we also control for exper, the gap declines to $2.16 (still large and
statistically significant).



w A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

y

e The previous regressions use males as the base group (or benchmark group or
reference group). The coefficient —2.16 on female tells us how women do
compared with men.

e Of course, we get the same answer if we women as the base group, which means
using a dummy variable for males rather than females.

e Because male = 1 — female, the coefficient on the dummy changes sign but
must remain the same magnitude.

e The intercept changes because now the base (or reference) group is females.



w A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

e Putting female and male both in the equation is redundant. We have two groups
so need only two intercepts.

e This is the simplest example of the so-called dummy variable trap, which results
from putting in too many dummy variables to represent the given number of groups
(two in this case).

e Because an intercept is estimated for the base group, we need only one dummy
variable that distinguishes the two groups.



Interpreting Dummy Variable Coefficients with log(y) as the

Dependent Variable

e Consider the following regression:
= log(y) = Bo + /81$dummy + foxe +u

e When log(y) is the dependent variable in a model, the coefficient on a dummy
variable, when multiplied by 100, is interpreted as the percentage difference in y,
holding all other factors fixed.



Interpreting Dummy Variable Coefficients with log(y) as the

Dependent Variable

e When the coefficient on a dummy variable suggests a large proportionate change
in y, the exact percentage difference can be obtained exactly as with the
semi-elasticity calculation.

Recall,

Model Dependent Variable | Independent Variable | Interpretation of [3;
Level-Level y x Ay = 1Az
Level-Log y log(x) Ay = (1/100)%Ax
Log-Level log(y) T %Ay = (10051)Ax

Log-Log log(y) log(x) %Ay = b1%Ax




Interpreting Coefficients on Dummy Explanatory Variables when

the Dependent Variable is log(y)

Dependent variable:

lwage
female —-0.397*x*x*
B (0.043)
[¢
Ic
e e Constant 1.814%%*
(0.030)
Observations 526
R2 0.140
Adjusted R2 0.138
Residual Std. Error 0.494 (df = 524)
F Statistic 85.044%*x (df = 1; 524)

Note: *p<0.1; **p<0.05; ***p<0.01



Interpreting Coefficients on Dummy Explanatory Variables when

the Dependent Variable is log(y)

lwage = 1.814 — .397 female
(.030)  (.043)

n = 526, R>=.138

e A rough estimate is that in the population of working, high school graduates, the
average wage for women is below that of men by 39.7%.



Interpreting Dummy Variable Coefficients with log(y) as the

Dependent Variable

e Thus, for the following regression:

log(y) = fo+ /ledummy + Boza +u

for the dummy variable Z gy, the exact percentage difference in the predicted y
when Zgymmy = 1 versus when xgymmy = 0 is:

100 - [eap(f1) — 1] ]




Interpreting Coefficients on Dummy Explanatory Variables when

the Dependent Variable is log(y)

Dependent variable:

lwage
female —-0.397*x*x*
B (0.043)
[¢
Ic
e e Constant 1.814%%*
(0.030)
Observations 526
R2 0.140
Adjusted R2 0.138
Residual Std. Error 0.494 (df = 524)
F Statistic 85.044%*x (df = 1; 524)

Note: *p<0.1; **p<0.05; ***p<0.01



Interpreting Coefficients on Dummy Explanatory Variables when
the Dependent Variable is log(y)

Exact Percentage Difference

Using,

Dummy Varisle e Men as the base (reference) group:,
S precise estimate in wage difference: exp(—.397) — 1 ~ —.328, or 32.8% lower for
women.

e Women as the base (reference) group:,
precise estimate in wage difference: exp(.397) — 1 ~ —.487, or 48.7% higher for
men.




Interpreting Coefficients on Dummy Explanatory Variables when

the Dependent Variable is log(y)

Dependent variable:

Dependent variable:
___________________________ 1vage
Lvage female ~0.344wk%
(0.038)
female =0.361%xx
Dumm e (0.039) educ 0.091xk%
i h
2 educ 0.077x%% (0.007)
pendent Variable
(0.007) exper 0.009%%
(0.001)
Constant 0.826%x
(0-034) Constant 0.481%%
(0.105)
Observations 526
ﬁ_ - g'igg Observations 526
R J“j:tel std. E 0.445 (af = 523) 2 0.353
o Std. Error 12 180m0s (af = 5. 523) Adjusted R2 0.349
tatistic : =% Residual Std. Error 0.429 (df = 522)
F Statistic 94.74Txx (df = 3; 522)
ty Note: *p<0.1; *#p<0.05; ***p<0.01

Note: #p<0.1; **p<0.05; *%*p<0.01



Interpreting Coefficients on Dummy Explanatory Variables when

the Dependent Variable is log(y)

e The gap shrinks, but is still substantial.

N e If we control for workforce experience and education, the difference is
approximately 34.4% lower for women. The precise estimate in wage difference:
exp(—.344) — 1 ~ —.291, or 29.1% lower for women.

e That is, at any given levels of experience and education, a woman is predicted to
earn about 29% less than a man.



w Dummy Variables for Multiple Categories

e Suppose in the wage example we have two qualitative variables, gender and marital
status. Call these female and married.

e We can define four exhaustive and mutually exclusive groups. These are married
males (marrmale), married females (marr fem), single males (singmale), and
single females (singfem).

e Note that we can define each of these dummy variables in terms of female and
married:



w Dummy Variables for Multiple Categories

marrmale
marr fem
singmale

sing fem

married - (1 — female)
married - female
(1 — married) - (1 — female)

(1 — married) - female



w Dummy Variables for Multiple Categories

e We can allow each of the four groups to have a different intercept by choosing a
base group and then including dummies for the other three groups.

e So, if we choose single males as the base group, we include marrmale,
marr fem, and singfem in the regression. The coefficients on these variabels are
relative to single men.

e With [wage as the dependent variable, we can give them a percentage change
interpretation.



K! ' Interpreting Coefficients on Dummy Explanatory Variables when

the Dependent Variable is log(y)

Dependent variable:

luage
marrmale 0.292%*xx
(0.055)
marrfem ~0.120%*
(0.058)
singfen -0.097%
(0.057)
educ 0.084**x
(0.007)
Dummy V.
Multiple Categorie: exper 260332)
tenure 0.016%**
(0.003)
Constant 0.388%4x
(0.102)
Observations 526
R2 0.424
ty Adjusted R2 0.417
Residual Std. Error 0.406 (df = 519)
F Statistic 63.626%x* (df = 6; 519)

Note: #p<0.1; %*p<0.05; #%+p<0.01



w Dummy Variables for Multiple Categories

e Using the usual approximation based on differences in logarithms — and holding
fixed education, experience, and tenure — a married man is estimated to earn about

29.2% more than a single man.

e Remember, this compares two men with the same level of schooling, general
workforce experience, and tenure with the current employer.



Interpreting Coefficients on Dummy Explanatory Variables when

the Dependent Variable is log(y)

e What if we want to compare married women and single women? Just plug in the
correct set of zeros and ones.

intercept for married women = .388 —.120
intercept for single women = .388 —.097
difference = —0.268 — (—0.291) = —.023
so married women earn about 2.3% less than single women (controlling for other
factors).
e We cannot tell from the previous output whether this difference is statistically
significant.

e Note how the intercept for single men gets differenced away.



Goodness-of-
Fit and
Selection of
Regressors:
the Adjusted
R-Squared

©® Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared



IQJ Adjusted R-Squared

Goodness-of-
Fit and
Selection of
Regressors:
the Adjusted
R-Squared

Recall that,
e How do we decide whether to include a single new independent variable: ¢ test.

e How do we decide whether to include a group of new variables: F' test.

Adjusted R-Squared

Motivation: R? can never go down (usually increases) when one or more variables
is added to a regression.

e We use the adjusted R-squared to compare across models that have different
numbers of explanatory variables but where one is not a special case of the other
(nonnested models).

e The adjusted R-squared imposes a penalty for adding additional explanatory
variables.




Goodness-of-
Fit and
Selection of
Regressors:
the Adjusted
R-Squared

Adjusted R-Squared

e As usual, start with

y= 0B+ Pix1+ ...+ Brrp +u
o Now we need to be more careful with variance labels:

Jz = Var(y)
ag = Var(u)
Define
2
9 o
pr=l-—
Y

This is the population R-squared — the amount of population variation in y
explained by z1, ..., Tk.



Adjusted R-Squared

e The formula for the R? can be written as

2 SSR_ | (SSR/m)
SST (SST/n)’

which shows we can think of R? as using SSR/n to estimate o2 and SST/n to
estimate 05. These are consistent but not unbiased estimators.
e |nstead, use

Goodness-of-
Fit and
Selection of
Regressors:

ngAdjuséed SSR/(TL — k- 1)
-Square:
. SST/(n—1)

as the unbiased estimators.



w Adjusted R-Squared

e Plugging in gives the adjusted R-squared, also called " R-bar-squared™:

R o o1 [SSR/(n —k —1)]
[SST/(n = 1)
N [SST/(n —1)]
Goodness-of- where 62 is the usual variance parameter estimator.
Fit and =
Selection of e R? imposes a penalty: When more regressors are added, SSR falls, but so does
Regressors: 592 .
the Adjusted df =n —k —1. R® can increase or decrease.
R-Squared

e For k > 1, R? < R? unless SSR = 0 (not an interesting case).

e It is possible that R? < 0, especially if df is small. Remember that R? > 0 always.



w Adjusted R-Squared

Goodness-of-
Fit and
Selection of
Regressors:
the Adjusted
R-Squared

Algebraic Facts:
1. If a single variable is added to a regression, R? increases if and only if the

absolute ¢ statistic of the new variable is greater than one.

2. If two or more variables are added to a regression, R? increases if and only if the
F statistic for joint significance of the new variables is greater than one.

e Important: In the R-squared form of the F’ statistic that we covered, it is the
usual R-squared, not the adjusted R-squared, that appears.

e Sometimes R? is called the “corrected R-squared”. J
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w Heteroskedasticity

e Recall the five Gauss-Markov Assumptions for OLS regression:

Gauss-Markov Assumptions

MLR.1: y = By + frx1 + Boxo + ... + Brxr +u

MLR.2: random sampling from the population

MLR.3: no perfect collinearity in the sample

MLR.4: E(u|xi,...,z) = E(u) = 0 (exogenous explanatory variables)
MLR.5: Var(u|zy,...,zx) = Var(u) = 02 (homoskedasticity)

Heteroskedastic
& Robust
Inference



w Heteroskedasticity

Heteroskedastic
& Robust
Inference

e Under these five assumptions, OLS has lots of nice properties.

e OLS is BLUE.
® OLS is (asymptotically) efficient

Consequences of adding/removing assumption MLR.6

e With normality (MLR.6), the tests and confidence intervals are exact given any
sample size.

e Without normality (MLR.6), the usual OLS test statistics and Cls are only
asymptotically justified = you need to have a large sample to use them.




w Heteroskedasticity

Heteroskedastic
& Robust
Inference

Consequences of adding/removing assumption MLR.5

e |f we do not impose or assume homoskedastic errors, i.e., if we drop MLR.5 and
act as if we know nothing about Var(u|zy,...,xr) =7

e Since, heteroskedasticity does not cause bias in the ﬁ}, OLS is still unbiased
under MLR.1 to MLR.4.

e OLS is no longer BLUE.

e |t is possible to find unbiased estimators that have smaller variances than the
OLS estimators.

e Important: standard errors are no longer valid.




w Heteroskedasticity

e This means the ¢ statistics and confidence intervals that use these standard errors
cannot be trusted.

e This is true even in large samples.

e Joint hypotheses tests using the usual F' statistic are no longer valid in the
presence of heteroskedasticity.

Heteroskedastic
& Robust
Inference



IQJ Heteroskedasticity

e Standard errors and all test statistics can be modified to be valid in the presence of
heteroskedasticity of unknown form.

Heteroskedasticity-Robust Standard Errors

® \We need to compute heteroskedasticity-robust standard errors.

® Which produces heteroskedasticity-robust t statistics and
heteroskedasticity-robust confidence intervals.

® The heteroskedasticity-robust test statistics and Cls only have asymptotic
justification, even if the full set of CLM assumptions hold.
Heteroskedasti . = a5 B
,;;ZE;: s ® With smaller sample sizes, the heteroskedasticity-robust statistics need not be
Inference well behaved.




Heteroskedasticity

P

lwage = 1.6492 — .2202 female+ .0521 exper+ .0762 coll
(.0720) (.0318) (.0058) (.0066)
[.0754] [.0325] [.0060] [.0068]
n = 750, R =.302, R* = .299

e The robust statistics are virtually always different from the usual statistics,
regardless of which set of assumptions holds in the population.

Motgwam  © In this example: The robust standard errors (between square brackets) are all

Inference slightly larger than the usual standard errors.

e In this example: Cls are slightly wider, ¢ statistics slightly lower.



w Heteroskedasticity

Tests of Heteroskedasticity:

Assuming MLR.1 to MLR.4 holds:

® Breusch-Pagan test for heteroskedasticity

® White test for heteroskedasticity

Heteroskedastic
& Robust
Inference



w Heteroskedasticity

Anal ith

Heteroskedastic
& Robust
Inference

Steps in Computing the Breusch-Pagan (and White) Test

1. Estimate the equation y = 5y + S121 + Boxa + ... + Brwr + u by OLS, saving the
OLS residuals, 1i;.

2. Compute the squared residuals, 2.

3. Regress @2 on all explanatory variables (for White: ... on all explanatory

variables and also the nonredundant squares and interactions of all explanatory
variables) and compute the usual F' test of joint significance of the explanatory
variables.

4. If the p-value of the test is sufficiently small, reject the null of homoskedasticity
and conclude that the homoskedasticity assumption (MLR.5) fails.
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