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w Definition of the Simple Regression Model

Definition of
the Simple

Regression e What type of analysis will we do? Cross-sectional analysis
Model
¢ First step: Clearly define what is your population (in what you are interested

to study).

® Second Step: There are two variables, 2 and ¥y, and we would like to “study
how y varies with changes in z."

® Third Step: We assume we can collect a random sample from the population
of interest.

Now we will learn to write our first econometric model, derive an estimator
(what’s an estimator again?) and use this estimator in our sample.



w Introduction

Definition of
the Simple
Regression
Model

We must confront three issues:

@® How do we allow factors other than z to affect y? There is never an exact
relationship between two variables.

® What is the functional relationship between y and z7?

© How can we be sure we a capturing a ceteris paribus relationship between y and
x?




IQJ Introduction

Definition of
the Simple
Regression
Model

Consider the following equation relating y to «:

y = Po+ Bz +u, J

which is assumed to hold in the population of interest.

e This equation defines the simple linear regression model (or two-variable
regression model, or bivariate linear regression model).



IQJ Introduction

Definition of
the Simple
Regression

e e y and x are not treated symmetrically. We want to explain y in terms of x.

x explains y

e Example:

size of the city x, explains number of crimes (y) (not the other way around).



w Terminology for Simple Regression

Definition of
the Simple
Regression
Model

Yy x
Dependent Variable | Independent Variable
Explained Variable | Explanatory Variable
Resonse Variable Control Variable
Predicted Variable Predictor Variable
Regressand Regressor




w The error term

Definition of
the Simple
Regression
Model

y=Po+ bz +u
This equation explicitly allows for other factors, contained in u, to affect y.
This equation also addresses the functional form issue (in a simple way).
Namely, y is assumed to be linearly related to x.

We call 5y the intercept parameter and 3, the slope parameter. These describe
a population, and our ultimate goal is to estimate them.



w The simple linear regression model equation

Definition of . . . .
the Simple e The equation also addresses the ceteris paribus issue. In

Regression
Model

y:BO+61$+U,

all other factors that affect y are in u. We want to know how y changes when z
changes, holding u fixed.
e Let A denote “change."Then holding u fixed means Au = 0. So

Ay = pfr1Ax+ Au
= pi1Azx when Au = 0.

e This equation effectively defines (31 as a slope, with the only difference being the
restriction Au = 0.



w The simple linear regression model equation

Definition of
the Simple
Regression
Model

Example: Yield and Fertilizer

e A model to explain crop yield to fertilizer use is

yield = By + B fertilizer + u,

where u contains land quality, rainfall on a plot of land, and so on. The slope
parameter, (1, is of primary interest: it tells us how yield changes when the amount
of fertilizer changes, holding all else fixed.

v




w The simple linear regression model equation

Definition of
the Simple
Regression
Model

Example: Wage and Education
wage = By + Preduc + u

where u contains somewhat nebulous factors (“ability”) but also past workforce
experience and tenure on the current job.

Awage = f1Aeduc  when Au =0




w The simple linear regression model equation

Definition of

the Simple We said we must confront three issues:
i
Model 1. How do we allow factors other than z to affect y?

Answer: u

2. What is the functional relationship between y and x7?
Answer: Linear (z has a linear effect on y)

3. How can we be sure we a capturing a ceteris paribus relationship between y and
x?

Answer: Related with Au =10

e We have argued that the simple regression model

y= P+ Br+u
addresses each of them.



IQJ Relation between u and x

Definition of

the Simple

R i . o

e To estimate 31 and By from a random sample we also need to restrict how « and
x are related to each other.

e Recall that = and u are properly viewed as having distributions in the population.

e What we must do is restrict the way in when u and x relate to each other in the
population.

e First, we make a simplifying assumption that is without loss of generality: the
average, or expected, value of u is zero in the population:

E(u)=0



w Relation between u and x

Definition of

the Simple L. . . .

Regression e Normalizing u should cause no impact in the most important parameter: 5;
Model

e The presence of 3y in

y=Po+ Bz +u

allows us to assume E(u) = 0.

e |f the average of w is different from zero, we just adjust the intercept, leaving the
slope the same. If oy = E(u) then we can write

y = (Bo + ag) + Brx + (u — ag),

where the new error, u — o, has a zero mean.



w Relation between u and x

Definition of
the Simple
Regression
Model

We need to restrict the dependence between v and x )

e Option 1: Uncorrelated
We could assume u and z uncorrelated in the population:

Corr(z,u) =0

It implies only that u and x are not linearly related. Not good enough.



w Relation between u and x

Definition of
the Simple
Regression

Model e Option 2: Mean independence

The mean of the error (i.e., the mean of the unobservables) is the same across all
slices of the population determined by values of x.

We represent it by:

E(u|x) = E(u), all values z,

And we say that u is mean independent of z



w Relation between u

Definition of
the Simple
Regression
Model

e Suppose u is “ability” and z is years of education. We need, for example,

E(ability|z = 8) = E(ability|z = 12) = E(ability|x = 16)

so that the average ability is the same in the different portions of the population with
an 8" grade education, a 12" grade education, and a four-year college education.



w Relation between

Definition of
the Simple
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Model

e Combining E(u|x) = E(u) (the substantive assumption) with E(u) =0 (a
normalization) gives

E(ulz) =0, all values x

e Called the zero conditional mean assumption.
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e First, recall the properties of conditional expectation. (see slides with a review of
Probability)

o Now, take the conditional expectation of our Simple Linear Regression Function.
Then, we get:

E(ylx) = po+ Bixz + E(ulx)
= Bo + Bi1z

which shows the population regression function is a linear function of x.
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Definition of
the Simple
Regression

Model Figure: The goal is to explain weekly consumption expenditure in terms of

weekly income

X—

Yl 80 100 120 140 160 180 200 220 240 260
Weekly family 55 65 79 80 102 110 120 135 137 150
consumption 60 70 84 93 107 115 136 137 145 152
expenditure Y, $ 65 74 90 95 110 120 140 140 155 175

70 80 94 103 116 130 144 152 165 178
75 85 98 108 118 135 145 157 175 180
- 88 - 13 125 140 - 160 189 185
- - - 115 - - - 162 - 191
Total 325 462 445 707 678 750 685 1043 966 1211
Conditional 65 77 89 101 113 125 137 149 161 173
means of Y,
E(Y|X)

Source: Gujarati, Damodar (2002). Basic Econometrics.



KU

Definition of
the Simple
Regression
Model . iy e
o Figure: Conditional Probabilities of the data

VI X) X—
A l ) 80 100 120 140 160 180 200 220 240 260
. 1 1 1 1 1 1 1 1 1 1
Conditional i s s 7 s & 8 7 & 7
probabilities p(Y'| X;) 1 ) ) 4 ; 4 S . | |
5 6 5 7 6 6 5 7 6 7
1 1 1 1 1 1 1 1 1 1
5 6 5 7 B B 5 7 6 7
1 1 1 1 1 1 1 1 1 1
5 6 5 7 5 B 5 7 6 7
1 1 1 1 1 1 1 1 1 1
5 6 5 7 6 6 5 7 6 7
- 1 - 1 1 1 — 1 1 1
6 7 6 6 7 6 7
_ _ 1 — _ _ 1 _ 1
7 7 7
Conditional 65 77 89 101 113 125 137 149 161 173
means of Y

Source: Gujarati, Damodar (2002). Basic Econometrics.
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Maddl Figure: Conditional distribution of expenditure for various levels of income
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Source: Gujarati, Damodar (2002). Basic Econometrics.
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Definition of
the Simple
Regression . . . .
Model Figure: The Population Regression Function (PRF)

Y

(® Conditional mean
E(Y1X)
149

Distribution of

101 Y given X = $220

65

< X
80 140 220

Source: Gujarati, Damodar (2002). Basic Econometrics.
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e The straight line in the previous graph is the PRF, E(y|x) = 5o + f1z. The
conditional distribution of y at three different values of x are superimposed.

e For a given value of x, we see a range of y values: remember, y = 5y + 1 + u,
and u has a distribution in the population.

e |n practice, we never know the population intercept and slope.



Definition of
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Regression

Model e Assuming we know the PRF, consider this example:

e Suppose for the population of students attending a university, we know the PRF:

E(colGPA|hsGPA) = 1.5+ 0.5 hsGPA,

e For this example, what is y? what is 7 What is the slope? What's the intercept?

o If hsGPA = 3.6 what's the expected college GPA? 1.5 + 0.5(3.6) = 3.3
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@ Deriving the Ordinary Least Squares Estimates



w Deriving the OLS

Deriving the
Ordinary Least

SR e Given data on x and y, how can we estimate the population parameters, 5y and
/3 ?
11

o Let {(x;,yi):i=1,2,...,n} be a random sample of size n (the number of
observations) from the population. Think of this as a random sample.



w Deriving the OLS

Derivation: (On white board)

- =
Sl Estimator for 5,

Ordinary Least
Squares
Estimates

Estimator for 3,

B = >ie1(zs — )(y; —y) _ Sample Covariance(z,y)
b SP o (z;—x)2  Sample Variance(x)
— Sl?y
Sz
. O
= px,yTy
° v
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Deriving the OLS

200
X First sample
SRF;
150
Regression based on
the first sample
100
X
50 -
20 1 1 1 1 1 1 1 1 1 1

80 100 120 140 160 180 200 220 240 260



w Deriving the OLS

200
+ SRF,
o . Regression based on
eriving the 1
Ordinary Least ¢ Second sample the second sample
Squares °
Estimates 150 . .
.
L]
100
L]
.
.
50 - M
L 1 I 1 1 I 1 I 1 1

80 100 120 140 160 180 200 220 240 260
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Deriving the
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Estimates

Deriving the OLS

200
. SRE,
x First sample Regression based on
¢ Second sample the second sample SRF,
150
. Regression based on
x the first sample
100
50 - M
20 1 1 1 1 1 1 1 1 1 1

80 100 120 140 160 180 200 220 240 260
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Deriving the OLS

SRF: Y; = f,+ B, X;

X,

1
Source: Gujarati, Damodar (2002). Basic Econometrics.



w Interpreting the OLS Estimates

Example: Effects of Education on Hourly Wage

Derivi e Data: random sample from the US workforce population in 1976.
eriving the

bedead  wage: dollars per hour,

quares

S educ: highest grade completed (years of education).

e The estimated equation is

wage = —0.90 + 0.54 educ
n = 526

e Each additional year of schooling is estimated to be worth $0.54.




IQJ Interpreting the OLS Estimates

Deriving the
Ordinary Least
Squares
Estimates

The function
wage = —0.90 + 0.54 educ

is the OLS (or sample) regression line.




w Interpreting the OLS Estimates - R Output

Deriving the
Ordinary Least
Squares
Estimates

> stargazer (regression_wagel, type='text', align=TRUE, digits=2)

Dependent variable:

wage
educ 0.54%%%
(0.05)
Constant -0.90
(0.68)
Observations 526
R2 0.16
Adjusted R2 0.16
Residual Std. Error 3.38 (df = 524)
F Statistic 103.36xx*x (df = 1; 524)

Note: *p<0.1; *%p<0.05; *¥*p<0.01



w Interpreting the OLS Estimates

Deriving the
Ordinary Least
Squares
Estimates

e When we write the simple linear regression model,

wage = [y + Preduc + u,

it applies to the population, so we do not know 3y and ;.
° BO = —0.90 and Bl = 0.54 are our estimates from this particular sample.

e These estimates may or may not be close to the population values. If we obtain
another sample, the estimates would almost certainly change.



w Interpreting the OLS Estimates

Deriving the o If educ = O,
Ordinary Least . .
Squares the predicted wage is:

Estimates

wage = —0.90 + 0.54(0) = —0.90

The predicted value does not fit in reality.

Mainly because when we extrapolate outside the majority range of our data can
produce strange predictions.




w Interpreting the OLS Estimates

Deriving the
Ordinary Least
Squares
Estimates

e When educ = 8§,
the predicted wage is:

wage = —0.90 + 0.54(8) = 3.42

which we can think of as our estimate of the average wage in the population when
educ = 8.




w Interpreting the OLS Estimates

Deriving the Sample Regression Line (SRF)
Ordinary Least

Squares

Estimates ’gz = Bo—i-ﬁlmi Z = 1,...,7?,

Also known as:
® OLS Regression Line

® Sample Regression Function

OLS Regression Function

Estimated Equation




w Interpreting the OLS Estimates

Deriving the . N .

Ordinary Least Bl Population Regression Function (PRF)

quares

Fetimates Since the simple linear regression model (or just econometric model) is:

yi = Bo + Brz; +u

Then, the PRF is:

:>E(yl|x):/80+/81xl 7::]-727"'7”




w Interpreting the OLS Estimates

Deriving the .
Ordinary Least Residuals
Squares

Estimates

i =y~ B(ylx)
—yi—fo-piz  i=12,...n




Properties of
OLS on any
Sample of
Data

© Properties of OLS on any Sample of Data



Properties of OLS on any Sample of Data

o Recall that the OLS residuals are

Properties of
OLS on any
Sample of

5 X X . '
° U = y; — Ui = ¥i — Bo — Brx; ci=1,2,..,n



w Properties of OLS on any Sample of Data

Properties of
OLS on any
Sample of
Data

X, X

> X.

3 X,

1 4

Source: Gujarati, Damodar (2002). Basic Econometrics.

X



Properties of OLS on any Sample of Data

e Some residuals are positive, others are negative.
Properties of
OLS on any

Sample of o If 4; is positive = the line underpredicts y;

o If @; is negative = the line overpredicts y;



Algebraic Properties of OLS Statistics

(1) The sum of the OLS residuals is 0

Properties of
OLS on any
Sample of
Data




Properties of
OLS on any
Sample of
Data

Algebraic Properties of OLS Statistics

(2) The sample covariance between the explanatory variables and the residuals is
always zero

e Therefore the sample correlation between the x and ; is also equal to zero.

e Because the g; are linear functions of the z;, the fitted values and residuals are
uncorrelated, too:




Algebraic Properties of OLS Statistics

(3) The point (z, ) is always on the OLS regression line.

Properties of
OLS on any - 5 A =
Sample of y — MO + le

Data

e That is, if we plug in the average for x, we predict the sample average for y.




w Goodness-of-Fit

Y
Y, =B+ B, X;
\' SRF
Properties of . ’
OLS on any
Sample of . ..
Data _ .
Y .
- X
X

Source: Gujarati, Damodar (2002). Basic Econometrics.



Goodness-of-Fit

Goodness-of-Fit

e For each observation, write

Properties of

St Yi = Ui + Uy
Data
o Define:
Total Sum of Squares = SST = Y7 (y; —¥)?
Explained Sum of Squares = SSE = " (9 — %)

Residual Sum of Squares =SSR = I, a7




w Goodness-of-Fit

Y . .
4; = due to residual
Properties of (Y;-Y) = total
OLS on any ! |
Sample of | .
Data | +(¥;-Y) = due to regression
|
- |
Y f
|
|
|
|
|
|
|
|
' b
0 X;

Source: Gujarati, Damodar (2002). Basic Econometrics.



w Goodness-of-Fit

(Other names)

e SSR is also know as Sum of Squared Residuals or Model Sum of Residuals

Properties of
OLS on any
Sample of

Data e SST =TSS
e SSE =ESS

e SSR=RSS



w Goodness-of-Fit

SST = Y9

=1
P f =
roperties of ~ ~ —
OLSpon any = Z[(yl - yl) + (y’t - y)]z
Sample of ._
Data =1
N (4 2
= Z[Uz - (yz - y)]
=1

Using the fact that the fitted values and residuals are uncorrelated:

SST = SSE + SSR )




w Goodness-of-Fit

The R-Squared

Goal: We want to evaluate how well the independet variable x explains the
dependent variable y.

Properties of
OLS on any e We want to obtain the fraction of the sample variation in y that is explained by x.
Data

e We will summarize it in one number: R? (or coefficient of determination.)

e Assuming SST > 0,

_SSE __SSR

2 _ — —_—
R - SST SST



IQJ Goodness-of-Fit

Properties of
OLS on any
Sample of
Data

e Since SSF cannot be greater than the SST, then:

0<R’<1

e R? = 0 = No linear relationship (between y; and x;).
e R? = 1 = Perfect linear relationship (between y; and z;).

o As R? increases = y; gets closer and closer to the OLS regression line.

We should not focus only on R? to analyze our regression. J
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Properties of
OLS on any
Sample of
Data

Goodness-of-Fit

Example (Wage)

wage = —0.904+ 0.54 educ
n = 526, R%* = 16

e Therefore, years of education explains only about 16% of the variation in hourly

wage.




w Goodness-of-Fit - R output

Properties of
OLS on any
Sample of
Data

> summary(regression_wagel)

Call:
Im(formula = wage

educ, data = wagel)

Residuals:
Min 1Q Median 3Q Max
-5.3396 -2.1501 -0.9674 1.1921 16.6085

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.90485 0.68497 -1.321 0.187
educ 0.54136 0.05325 10.167 <2e-16 ***

Signif. codes: 0O 'x*x*' 0.001 '**' 0.01 'x' 0.05 '.' 0.1 "' ' 1

Residual standard error: 3.378 on 524 degrees of freedom
Multiple R-squared: 0.1648, Adjusted R-squared: 0.1632
F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16



w Goodness-of-Fit - R output (using stargazer)

Properties of
OLS on any
Sample of
Data

> stargazer (regression_wagel, type='text', align=TRUE, digits=2)

Dependent variable:

wage
educ 0.54%%%
(0.05)
Constant -0.90
(0.68)
Observations 526
R2 0.16
Adjusted R2 0.16
Residual Std. Error 3.38 (df = 524)
F Statistic 103.36xx*x (df = 1; 524)

Note: *p<0.1; *%p<0.05; *¥*p<0.01



Exercise

You have a random sample with 10 data points. Your observations are (z;,v;). Find
the 5y, B1 and R?.

(P)TSF’E;::'ZiOF Obs. #  x; Yi ; i—9) (@i—-3) @-9° (@i-%)° (zi—2)(yi—79) 9i (v — %) (9 —9)* (vi—8:)°

Sample of Y 1 ko 70 80 -41 -90 1681 8100 3690 65.18 4.82 2099.31 23.21

Data 2 T 65 100 -46 -70 2116 4900 3220 75.36 -10.36 1269.95 107.40
3 T3 90 120 -21 -50 441 2500 1050 85.55 4.45 647.93 19.84
4 Ty 95 140 -16 -30 256 900 480 95.73 -0.73 233.26 0.53
5 x5 110 160 -1 -10 1 100 10 105.91 4.09 25.92 16.74
6 T 115 180 4 10 16 100 40 116.09 -1.09 25.92 1.19
7 x7 120 200 9 30 81 900 270 126.27 -6.27 233.26 39.35
8 xg 140 220 29 50 841 2500 1450 136.45 3.55 647.93 12.57
9 Ty 155 240 44 70 1936 4900 3080 146.64 8.36 1269.95 69.95
10 19 150 260 39 90 1521 8100 3510 156.82 -6.82 2099.31 46.49

Sum 1,110 1,700 0.00 0.00 8,890 33,000 16,800 1,110 0.00 8,553 337
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and Functional

R Using the Natural Logarithm in Simple Regression



w The effects of Changing Units of Measurement on OLS Statistics

Example

salary: Annual CEQ's salary in thousands of dollars
roe: Average return on equity (measured in percentage)

Units of salary = 963.19 + 18.50 roe

Measurement

d F ional
T n = 209, R?=.01

e A one unit increase in the independent variable (i.e. roe increases one percent) =
increases the predicted salary by 18.501, or $18,501.



w The effects of Changing Units of Measurement on OLS Statistics

Units of
Measurement
and Functional
Form

e If we measure roe as a decimal (rather than a percent), what will happen to the
intercept, slope, and R??
We want:

roedec = roe/100

e What if we measure salary in dollars (rather than thousands of dollars)? what will
happen to the intercept, slope, and R??
We want:

salarydol = 1,000 - salary



w The effects of Changing Units of Measurement on OLS Statistics

Changing Units of Measurement

e If the dependent variable y
is multiplied by a constant ¢ = ¢- 8y and ¢- ;1

e If the independent variable x

Units of
Measurement
and Functional
Form

1 4
is multiplied by a constant ¢ = — - 31
c

In general, changing the units of measurement of only the independent variable does
not affect the intercept

v




w The effects of Changing Units of Measurement on OLS Statistics

Example: CEQ'’s salary - Original Regression

salary = 963.19 4 18.50 roe
n = 209, R?=.01

Units of
Measurement

Saabdel  The new regression is:

Form

—

salary = 963.191 + 1,850.1 roedec
n = 209, R?= .01




w The effects of Changing Units of Measurement on OLS Statistics

> roedec<-ceosall$roe*(1/100)
> regression_ceosallc <- Im(salary ~ roedec, data = ceosall)
> stargazer(regression_ceosallc, type='text', align=TRUE, digits=2)

Dependent variable:

salary
roedec 1,850.12%
(1,112.33)
Units of Constant 963.19**x*
Measurement (213.24)
and Functional
Form
Observations 209
R2 0.01
Adjusted R2 0.01
Residual Std. Error 1,366.55 (df = 207)
F Statistic 2.77+ (df = 1; 207)

Note: *p<0.1; #*p<0.05; **+*p<0.01



w The effects of Changing Units of Measurement on OLS Statistics

Example: CEQ'’s salary - Original Regression

—

salary = 963.19 4 18.50 roe
n = 209, R?=.01

p.
Units of

Example: CEQ'’s salary - salary in dollars
Measurement

el The new regression is

Form

sa@ol = 963,191 + 18,501 roe
n = 209, R?>=.01




w The effects of Changing Units of Measurement on OLS Statistics

> salarydol<-ceosall$salary*1000
> regression_ceosallb <- lm(salarydol ~ roe, data = ceosall)
> stargazer(regression_ceosallb, type='text', align=TRUE, digits=2)

Dependent variable:

salarydol
roe 18,501.19%
(11,123.25)
Units of Constant 963,191.30%**
Measurement (213,240.30)
and Functional
Form
Observations 209
R2 0.01
Adjusted R2 0.01
Residual Std. Error 1,366,555.00 (df = 207)
F Statistic 2.77% (df = 1; 207)

Note: *p<0.1; **p<0.05; *¥*p<0.01



IQJ Using the Natural Logarithm in Simple Regression

e Recall the wage example:

Example (Wage)

wage = —0.90 + 0.54 educ
n = 526, R? = 16

e Now, think about the econometric model and how this OLS Regression Function is
interpreted.

e What the OLS Regression Line says may not fit how economically we see the
problem.

Possible issue: the dollar value of another year of schooling is constant.



w Using the Natural Logarithm in Simple Regression

e So the 16" year of education is worth the same as the second.

e We expect additional years of schooling to be worth more, in dollar terms, than
previous years.

e How can we incorporate an increasing effect? One way is to postulate a constant
percentage effect.

e\We can approximate percentage changes using the natural log.



w Using the Natural Logarithm in Simple Regression

Constant Percent Model

e Let the dependent variable be log(wage) and write a (new) simple linear
regression model:

log(wage) = By + Breduc + u

B o Let's define log(wage) (write it as lwage) and run a new regression.



w Using the Natural Logarithm in Simple Regression

Dependent variable:

lwage
educ 0. 08**x*
(0.01)
Constant 0.58%**
(0.10)
Observations 526
R2 0.19
Adjusted R2 0.18
Residual Std. Error 0.48 (df = 524)
F Statistic 119.58+** (df = 1; 524)

Note: *p<0.1; **p<0.05; ***p<0.01



w Using the Natural Logarithm in Simple Regression

lwage = 0.58 4+ .08 educ
n = 526, R*=.19

e The estimated return to each year of education is about 8%.

e Attention:

This R-squared is not directly comparable to the R-squared when wage is the
dependent variable. The total variation (SSTs) in wage; and lwage; that we must
explain are completely different.



w Using the Natural Logarithm in Simple Regression

Constant Elasticity Model

e We can use the log on both sides of the equation to get constant elasticity
models. For example, if

log(salary) = Bo + P log(sales) + u

then

__ %Asalary

=~ %Asales

e The elasticity is free of units of salary and sales.
e A constant elasticity model for salary and sales makes more sense than a constant
dollar effect.



w Using the Natural Logarithm in Simple Regression

Model Dependent Variable | Independent Variable | Interpretation of /;
Level-Level Y T Ay = f1Ax
Level-Log y log(x) Ay = (1/100)%Ax
Log-Level log(y) x %Ay = (10051)Ax

Log-Log log(y) log(x) %Ay = S1%Ax




IQJ Using the Natural Logarithm in Simple Regression

e Recall the CEOQ salary example, but now the independent variable is sales.

salary = [, + Pi1sales +u

e Applying log on both variables (dependent and independent) we get:

Example (CEO salary)

Lo Simple -

- log(salary) = 4.824 0.26 log(sales)
n = 209, R?’=21




w Using the Natural Logarithm in Simple Regression

Dependent variable:

log(salary)

log(sales) 0.26%%%

(0.03)
Constant 4. 82%*x

(0.29)
Observations 209
R2 0.21
Adjusted R2 0.21
Residual Std. Error 0.50 (df = 207)
F Statistic 55.30%** (df = 1; 207)

Note: *#p<0.1; #**p<0.05; ***p<0.01



w Using the Natural Logarithm in Simple Regression

e The estimated elasticity of CEO salary with respect to firms sales is about .26.

e A 10 percent increase in sales is associated with a

26(10) = 2.6

percent increase in salary.



Expected @ Expected Value of OLS

Value of OLS



w The 4 Assumptions for Unbiasedness

Goal: We want to study statistical properties of the OLS estimator J

e In order to that, we will need to impose 4 assumptions.

Expected
Value of OLS



w The 4 Assumptions for Unbiasedness

Assumption SLR.1 (Linear in Parameters)

The population model can be written as

y=pPo+Biz+u

where 3y and (31 are the (unknown) population parameters.

e What linear in parameters mean?

Expected

Value of OLS e Example of non linear in parameters on white board



IQJ The 4 Assumptions for Unbiasedness

Assumption SLR.2 (Random Sampling)

We have a random sample of size n, {(z;,y;) : i = 1,...,n}, following the
population model.

Expected
Value of OLS



IQJ The 4 Assumptions for Unbiasedness

Assumption SLR.3 (Sample Variation in the Explanatory Variable)
The sample outcomes on x; are not all the same value.

e This is the same as saying the sample variance of {z; : i = 1,...,n} is not zero.

e If in the population x does not change then we are not asking an interesting
question.

Expected
Value of OLS



IQJ The 4 Assumptions for Unbiasedness

Assumption SLR.4 (Zero Conditional Mean)

In the population, the error term has zero mean given any value of the explanatory
variable:

E(u|z) =0 for all z.

e Key assumption.

Expected e We can compute the OLS estimates whether or not this assumption holds.
Value of OLS




w The 4 Assumptions for Unbiasedness

Goal: We want to know if Bl is unbiased for 51, and BO is unbiased for (5 J
o |f,

E(B) =pi

E(Bo) = fo

Then, the OLS estimator is unbiased.

Expected
Value of OLS . .
o Demonstration: On the white board.



w Unbiasedness of OLS

Theorem: Unbiasedness of OLS
Under Assumptions SLR.1 through SLR.4

E(Bo) = o and E(B1) = 1 ,

for any values of 5y and fy, i.e., Bo is unbiased for 3y, and Bl is unbiased for 31

Expected
Value of OLS



IQJ Unbiasedness of OLS

Expected
Value of OLS

e Therefore, the four assumptions for the OLS estimator to be unbiased are:

SLR.1: (Linear in Parameters) y = By + 1z + u
SLR.2: (Random Sampling)

SLR.3: (Sample Variation in ;)

SLR.4: (Zero Conditional Mean) E(ulz) =0

e If any of these assumptions fails, the OLS estimator will (generally) be biased.

e To be discussed in the next chapter: What are the omitted factors? Are they
likely to be correlated with z7? If so, SLR.4 fails and OLS will be biased.
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