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IQJ Describing Qualitative Information

Multiple
Regression
Analysis with
Qualitative
Information

e We have been studying variables (dependent and independent) with quantitative
meaning.

e Now we need to study how to incorporate qualitative information in our
framework (Multiple Regression Analysis).

e How do we describe binary qualitative information? Examples:

® A person is either male or female. ’ binary or dummy variable‘

e A worker belongs to a union or does not. ‘binary or dummy variable‘

A firm offers a 401(k) pension plan or it does not. ’ binary or dummy variable‘

the race of an individual. ‘multiple categories variable‘

® the region where a firm is located (N, S, W, E). ’ multiple categories variable‘
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IQJ Describing Qualitative Information

Multiple
Regression
Analysis with
Qualitative

Information

e We will discuss only binary variables.

e Binary variable (or dummy variable) are also called a zero-one variable to
emphasize the two values it takes on.

e Therefore, we must decide which outcome is assigned zero, which is one.
e Good practice: to choose the variable name to be descriptive.

e For example, to indicate gender, female, which is one if the person is female, zero
if the person is male, is a better name than gender or sex (unclear what gender = 1
corresponds to).
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w Describing Qualitative Information

Multiple

Regression e Consider the following dataset:

Analysis with

Qualitative

Information head(wagel_dummy)
##  wage lwage educ exper tenure female married
## 1 3.10 1.131402 11 2 0 1 0
## 2 3.24 1.175573 12 22 2 1 1
## 3 3.00 1.098612 11 2 0 0 0
## 4 6.00 1.791759 8 44 28 0 1
## 5 5.30 1.667707 12 7 2 0 1
## 6 8.75 2.169054 16 9 8 0 1

tail (wagel_dummy)

## wage lwage educ exper tenure female married
## 521 5.65 1.7316556 12 2 0 0 0
## 522 15.00 2.7080503 16 14 2 1 1
## 523 2.27 0.8197798 10 2 0 1 0
## 524 4.67 1.5411590 15 13 18 0 1
## 525 11.56 2.4475510 16 5 1 0 1
## 526 3.50 1.2527629 14 5 4 1 0
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w Describing Qualitative Information

Multiple
Regression
Analysis with
Qualitative

Information

e For distinguishing different categories, any two different values would work.
Example: 5 or 6

e 0 and 1 make the interpretation in regression analysis much easier.
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® A Single Dummy Independent Variable

Dummy Variable Coefficients with log(y) as the Dependent Variable
Dummy Variables for Multiple Categories
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w A Single Dummy Independent Variable

e What would it mean to specify a simple regression model where the explanatory
variable is binary? Consider

A Single
Dummy

Independent wage = 60 + 50f€male +u
Variable
where we assume SLR.4 holds:
E(u|female) =0
o Therefore,

E(wage|female) = By + oo female
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w A Single Dummy Independent Variable

A Single e There are only two values of female, 0 and 1.

Dummy

Independent
Variable

E(wage|female = 0)= o+ d-0=[p
E(wage|female = 1)= o+ do-1= 5o+ do

Bo + do.

In other words, the average wage for men is Sy and the average wage for women is
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w A Single Dummy Independent Variable

A Single o We can write
Dummy

Independent

Variable

0o = E(wage|female = 1) — E(wage|female = 0)

as the difference in average wage between women and men.

e So Jg is not really a slope.

It is just a difference in average outcomes between the two groups.

10/53



w A Single Dummy Independent Variable

e The population relationship is mimicked in the simple regression estimates.

A Single
Dummy
Independent
Variable

By = wage,,
fo+d0 = wage;
b = wWage ; — Wage,y,

where wage,,, is the average wage for men in the sample and wage; is the average
wage for women in the sample.
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w A Single Dummy Independent Variable

## Total Observations in Table: 526

##
##

A Single ki I 0l 1l

Dummy ## | | |

Independent ##t | 274 | 252 |

Variable ## | 0.521 | 0.479 |
## | | I
stargazer (wagel_dummy, type='text')
##
## Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max
##
## wage 526 5.896 3.693 0.530 3.330 6.880 24.980
## lwage 526 1.623 0.532 -0.635 1.203 1.929 3.218
## educ 526 12.563 2.769 0 12 14 18
## exper 526 17.017 13.572 1 5 26 51
## tenure 526 5.1056 7.224 0 0 7 44
## female 526 0.479 0.500 0 0 1 1
## married 526 0.608 0.489 0 0 1 1

##
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w A Single Dummy Independent Variable

Dependent variable:

A Single wage

Dummy

Independent female —-2.512%x%

\ELELIS (0.303)
Constant 7 .099%%%

(0.210)

Observations 526
R2 0.116
Adjusted R2 0.114
Residual Std. Error 3.476 (df = 524)
F Statistic 68.537**x (df = 1; 524)
Note: *p<0.1; *¥p<0.05; ***p<0.01
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w A Single Dummy Independent Variable

A Single
Dummy

Lot pen: e The estimated difference is very large. Women earn about $2.51 less than men per
hour, on average.

o Of course, there are some women who earn more than some men; this is a
difference in averages.
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IQJ A Single Dummy Independent Variable

e This simple regression allows us to do a simple comparison of means test. The
null is

A Single

Dummy H : =
Independent 0 “f /J/m
Variable

where pi; is the population average wage for women and (i, is the population
average wage for men.

e Under MLR.1 to MLR.5, we can use the usual ¢ statistic as approximately valid (or
exactly under MLR.6):

tfemale = —8.28

which is a very strong rejection of Hy.
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IQJ A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

e The estimate 8y = —2.51 does not control for factors that should affect wage,
such as workforce experience and schooling.

e If women have, on average, less education, that could explain the difference in
average wages.

e If we just control for education, the model written in expected value form is

E(wage| female, educ) = By + o female + 31 educ

where now §y measures the gender difference when we hold fixed exper.
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w A Single Dummy Independent Variable

A Single
Dummy
Independent

Variable e Another way to write dg:

do = E(wage|female, educ) — E(wage|male, educ)

where educerg is any level of experience that is the same for the woman and man.
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w A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

Dependent variable:

wage
female —2.273%%%
(0.279)
educ 0.506%%*
(0.050)
Constant 0.623
(0.673)
Observations 526
R2 0.259
Adjusted R2 0.256
Residual Std. Error 3.186 (df = 523)

F Statistic

91.315%*x (df = 2; 523)

Note:

*p<0.1; #*p<0.05; *+*p<0.01
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IQJ A Single Dummy Independent Variable

e Notice that there is still a difference of about $2.27 (now it's smaller, but still large
A Single and statistically significant).

Dummy
Independent
Variable

e The model imposes a common slope on educ for men and women, (31, estimated
to be .506 in this example.

e Recall, that the intercept is the only number that differ both categories (men and
women).

e The estimated difference in average wages is the same at all levels of experience:
v $2.27.
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w A Single Dummy Independent Variable

Figure: Graph of wage = By + dg female + [1educ for 6y < 0

A Single

wage
Dummy
Independent
Variable

men: wage = B, + Beduc

\

women:
wage = (B, + 8,) + B, educ

slope = B,

educ
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w A Single Dummy Independent Variable

e Notice that we can add other variables.

Dependent variable:

wage
A Single
Dummy female -f;gs;;*
Independent :
Variable educ 0.603%#*
(0.051)
exper 0.064%xx
(0.010)
Constant =1.734%%
(0.754)
Observations 526
R2 0.309
Adjusted R2 0.305
Residual Std. Error 3.078 (df = 522)
F Statistic 77.920%xx (df = 3; 522)
Note: *p<0.1; *%p<0.05; #**p<0.01

e Note that if we also control for exper, the gap declines to $2.16 (still large and
statistically significant).
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IQJ A Single Dummy Independent Variable

A Single
Dummy
Independent
Variable

y

e The previous regressions use males as the base group (or benchmark group or
reference group). The coefficient —2.16 on female tells us how women do
compared with men.

e Of course, we get the same answer if we women as the base group, which means
using a dummy variable for males rather than females.

e Because male = 1 — female, the coefficient on the dummy changes sign but
must remain the same magnitude.

e The intercept changes because now the base (or reference) group is females.
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IQJ A Single Dummy Independent Variable

A Single e Putting female and male both in the equation is redundant. We have two groups

Dummy so need only two intercepts.

Independent
Variable

e This is the simplest example of the so-called dummy variable trap, which results
from putting in too many dummy variables to represent the given number of groups
(two in this case).

e Because an intercept is estimated for the base group, we need only one dummy
variable that distinguishes the two groups.
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Interpreting Dummy Variable Coefficients with log(y) as the
Dependent Variable

e Consider the following regression:
log(y) = Bo + /81$dummy + foxe +u

e When log(y) is the dependent variable in a model, the coefficient on a dummy
variable, when multiplied by 100, is interpreted as the percentage difference in y,
holding all other factors fixed.
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Interpreting Dummy Variable Coefficients with log(y) as the
Dependent Variable

e When the coefficient on a dummy variable suggests a large proportionate change
in y, the exact percentage difference can be obtained exactly as with the
semi-elasticity calculation.

Recall,

Model Dependent Variable | Independent Variable | Interpretation of [3;
Level-Level y x Ay = 1Az
Level-Log y log(x) Ay = (1/100)%Ax
Log-Level log(y) T %Ay = (10051)Ax

Log-Log log(y) log(x) %Ay = b1%Ax
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w Interpreting Coefficients on Dummy Explanatory Variables when
the Dependent Variable is log(y)

Dependent variable:

lwage
female -0.397**x*
(0.043)
Constant 1.814%%*
(0.030)
Observations 526
R2 0.140
Adjusted R2 0.138
Residual Std. Error 0.494 (df = 524)
F Statistic 85.044%*x (df = 1; 524)
Note: *p<0.1; *¥p<0.05; **xp<0.01
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w Interpreting Coefficients on Dummy Explanatory Variables when
the Dependent Variable is log(y)

lwage = 1.814 — .397 female
(.030)  (.043)

n = 526, R>=.138

e A rough estimate is that in the population of working, high school graduates, the
average wage for women is below that of men by 39.7%.
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Interpreting Dummy Variable Coefficients with log(y) as the
Dependent Variable

e Thus, for the following regression:

log(y) = fo+ /ledummy + Boza +u

for the dummy variable Z gy, the exact percentage difference in the predicted y
when Zgymmy = 1 versus when xgymmy = 0 is:

100 - [eap(f1) — 1] ]
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w Interpreting Coefficients on Dummy Explanatory Variables when
the Dependent Variable is log(y)

Dependent variable:

lwage
female -0.397**x*
(0.043)
Constant 1.814%%*
(0.030)
Observations 526
R2 0.140
Adjusted R2 0.138
Residual Std. Error 0.494 (df = 524)
F Statistic 85.044%*x (df = 1; 524)
Note: *p<0.1; *¥p<0.05; **xp<0.01
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w Interpreting Coefficients on Dummy Explanatory Variables when
the Dependent Variable is log(y)

Exact Percentage Difference

Using,

e Men as the base (reference) group:,
precise estimate in wage difference: exp(—.397) — 1 ~ —.328, or 32.8% lower for
women.

e Women as the base (reference) group:,
precise estimate in wage difference: exp(.397) — 1 ~ —.487, or 48.7% higher for
men.
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w Interpreting Coefficients on Dummy Explanatory Variables when
the Dependent Variable is log(y)

Dependent variable:

Dependent variable:

lwage
Luage female -0.344k%k
(0.038)
female -0.361%k%
(0.039) educ 0.091kkx
(0.007)
educ 0.077%%%
(0.007) exper 0.009%**
(0.001)
Constant 0.826%%x
(0.094) Constant 0.481%%%
(0.105)
Observations 526
R2 0.300 Observations 526
Adjusted R2 0.298 R2 0.353
Residual Std. Error 0.445 (df = 523) Adjusted R2 0.349
F Statistic 112.189xxx (df = 2; 523) Residual Std. Error 0.429 (af = 522)
F Statistic 94.747**x (df = 3; 522)
Note: #p<0.1; *#p<0.05; ***p<0.01
Note: *p<0.1; **p<0.05; ***p<0.01
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IQJ Interpreting Coefficients on Dummy Explanatory Variables when
the Dependent Variable is log(y)

e The gap shrinks, but is still substantial.

o If we control for workforce experience and education, the difference is
approximately 34.4% lower for women. The precise estimate in wage difference:
exp(—.344) — 1 ~ —.291, or 29.1% lower for women.

e That is, at any given levels of experience and education, a woman is predicted to
earn about 29% less than a man.
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IQJ Dummy Variables for Multiple Categories

e Suppose in the wage example we have two qualitative variables, gender and marital
status. Call these female and married.

e We can define four exhaustive and mutually exclusive groups. These are married
males (marrmale), married females (marr fem), single males (singmale), and
single females (singfem).

e Note that we can define each of these dummy variables in terms of female and
married:
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w Dummy Variables for Multiple Categories

marrmale
marr fem
singmale

sing fem

married - (1 — female)
married - female
(1 —married) - (1 — female)

(1 — married) - female
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IQJ Dummy Variables for Multiple Categories

e We can allow each of the four groups to have a different intercept by choosing a
base group and then including dummies for the other three groups.

e So, if we choose single males as the base group, we include marrmale,
marr fem, and singfem in the regression. The coefficients on these variabels are
relative to single men.

e With [wage as the dependent variable, we can give them a percentage change
interpretation.
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w Interpreting Coefficients on Dummy Explanatory Variables when
the Dependent Variable is log(y)

Dependent variable:

1lvage
marrmale 0.292%*x

(0.055)
narrfem -0.120%*

(0.058)
singfen -0.097%

(0.057)
educ 0.084%4x

(0.007)
exper 0.003%

(0.002)
tenure 0.016%*x

(0.003)
Constant 0.388**xx

0.102)
Observations 526
R2 0.424
Adjusted R2 0.417
Residual Std. Error 0.406 (af = 519)
F Statistic 63.626%** (df = 6; 519)
Note: *p<0.1; **p<0.05; +*+p<0.01
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IQJ Dummy Variables for Multiple Categories

e Using the usual approximation based on differences in logarithms — and holding
fixed education, experience, and tenure — a married man is estimated to earn about

29.2% more than a single man.

e Remember, this compares two men with the same level of schooling, general
workforce experience, and tenure with the current employer.
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IQJ Interpreting Coefficients on Dummy Explanatory Variables when
the Dependent Variable is log(y)

e What if we want to compare married women and single women? Just plug in the
correct set of zeros and ones.

intercept for married women = .388 —.120
intercept for single women = .388 — .097
difference = —0.268 — (—0.291) = —.023
so married women earn about 2.3% less than single women (controlling for other
factors).
e We cannot tell from the previous output whether this difference is statistically
significant.

e Note how the intercept for single men gets differenced away.
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w Topics

Goodness-of-
Fit and
Selection of
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the Adjusted
R-Squared

© Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared
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KU  Adjusted R-Squared

Goodness-of-
Fit and
Selection of
Regressors:
the Adjusted
R-Squared

Recall that,
e How do we decide whether to include a single new independent variable: ¢ test.

e How do we decide whether to include a group of new variables: F' test.

Adjusted R-Squared

Motivation: R? can never go down (usually increases) when one or more variables
is added to a regression.

e We use the adjusted R-squared to compare across models that have different
numbers of explanatory variables but where one is not a special case of the other
(nonnested models).

e The adjusted R-squared imposes a penalty for adding additional explanatory
variables.




Adjusted R-Squared

e As usual, start with

y= 0o+ Pix1+ ...+ Brrp +u
o Now we need to be more careful with variance labels:

2 p—
o, = Var(y)
2 J—
o, = Var(u)
Goodness-of-
Fit and .
Selection of Deflne
Regressors:
the Adjusted ,
R-Squared , 1 0_u
pPP=1-—-14
Uy

This is the population R-squared — the amount of population variation in y
explained by z1, ..., Tk.
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Adjusted R-Squared

e The formula for the R? can be written as

2 SSR_ | (SSR/n)
SST (SST/n)’

which shows we can think of R? as using SSR/n to estimate o2 and SST/n to
estimate 05. These are consistent but not unbiased estimators.
e |nstead, use

Goodness-of-
Fit and

Selection of

Regressors:

ngAdjuséed SSR/(TL — k- 1)
-Square:
SST/(n—1)

as the unbiased estimators.
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IQJ Adjusted R-Squared

Goodness-of-
Fit and
Selection of
Regressors:
the Adjusted
R-Squared

e Plugging in gives the adjusted R-squared, also called " R-bar-squared™:

o SSR/(n—k—1)]
B = = e 1

[SST/(n —1)]

- 1-

where 62 is the usual variance parameter estimator.

e R? imposes a penalty: When more regressors are added, SSR falls, but so does
df =n —k — 1. R? can increase or decrease.

e For k > 1, R? < R? unless SSR = 0 (not an interesting case).

e It is possible that R? < 0, especially if df is small. Remember that R? > 0 always.
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KU Adjusted R-Squared

Goodness-of-
Fit and
Selection of
Regressors:
the Adjusted
R-Squared

Algebraic Facts:

1. If a single variable is added to a regression, R? increases if and only if the
absolute ¢ statistic of the new variable is greater than one.

2. If two or more variables are added to a regression, R? increases if and only if the
F statistic for joint significance of the new variables is greater than one.

e Important: In the R-squared form of the F’ statistic that we covered, it is the
usual R-squared, not the adjusted R-squared, that appears.

e Sometimes R? is called the “corrected R-squared”. J
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w Topics

O Heteroskedasticity & Robust Inference

Heteroskedastic
& Robust
Inference
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w Heteroskedasticity

Heteroskedastic
& Robust
Inference

e Recall the five Gauss-Markov Assumptions for OLS regression:

Gauss-Markov Assumptions

MLR.1: y = By + frx1 + Boxo + ... + Brxr +u

MLR.2: random sampling from the population

MLR.3: no perfect collinearity in the sample

MLR.4: E(u|xi,...,z) = E(u) = 0 (exogenous explanatory variables)
MLR.5: Var(u|zy,...,zx) = Var(u) = 02 (homoskedasticity)
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w Heteroskedasticity

Heteroskedastic
& Robust
Inference

e Under these five assumptions, OLS has lots of nice properties.
e OLS is BLUE.
e OLS is (asymptotically) efficient

Consequences of adding/removing assumption MLR.6

e With normality (MLR.6), the tests and confidence intervals are exact given any
sample size.

e Without normality (MLR.6), the usual OLS test statistics and Cls are only
asymptotically justified = you need to have a large sample to use them.
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w Heteroskedasticity

Consequences of adding/removing assumption MLR.5

e |f we do not impose or assume homoskedastic errors, i.e., if we drop MLR.5 and
act as if we know nothing about Var(u|zy,...,xr) =7

e Since, heteroskedasticity does not cause bias in the ﬁ}, OLS is still unbiased
under MLR.1 to MLR.4.

e OLS is no longer BLUE.

e |t is possible to find unbiased estimators that have smaller variances than the
OLS estimators.

Heteroskedastic
& Robust
Inference

e Important: standard errors are no longer valid.
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w Heteroskedasticity

e This means the ¢ statistics and confidence intervals that use these standard errors
cannot be trusted.

e This is true even in large samples.

e Joint hypotheses tests using the usual F' statistic are no longer valid in the
presence of heteroskedasticity.

Heteroskedastic
& Robust
Inference
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IQJ Heteroskedasticity

e Standard errors and all test statistics can be modified to be valid in the presence of
heteroskedasticity of unknown form.

Heteroskedasticity-Robust Standard Errors

® \We need to compute heteroskedasticity-robust standard errors.

® Which produces heteroskedasticity-robust t statistics and
heteroskedasticity-robust confidence intervals.

® The heteroskedasticity-robust test statistics and Cls only have asymptotic
justification, even if the full set of CLM assumptions hold.

Heteroskedastic

i ® With smaller sample sizes, the heteroskedasticity-robust statistics need not be
Inference well behaved.
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Heteroskedasticity

P

lwage = 1.6492 — .2202 female+ .0521 exper+ .0762 coll
(.0720) (.0318) (.0058) (.0066)
[.0754] [.0325] [.0060] [.0068]
n = 750, R =.302, R* = .299

e The robust statistics are virtually always different from the usual statistics,
regardless of which set of assumptions holds in the population.

Motgwam  © In this example: The robust standard errors (between square brackets) are all

Inference slightly larger than the usual standard errors.

e In this example: Cls are slightly wider, ¢ statistics slightly lower. 51/53



w Heteroskedasticity

Tests of Heteroskedasticity:

Assuming MLR.1 to MLR.4 holds:

® Breusch-Pagan test for heteroskedasticity

e White test for heteroskedasticity

Heteroskedastic
& Robust
Inference
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w Heteroskedasticity

Heteroskedastic
& Robust
Inference

Steps in Computing the Breusch-Pagan (and White) Test

1. Estimate the equation y = 5y + S121 + Boxa + ... + Brwr + u by OLS, saving the
OLS residuals, 1i;.

2. Compute the squared residuals, 2.

3. Regress @2 on all explanatory variables (for White: ... on all explanatory
variables and also the nonredundant squares and interactions of all explanatory
variables) and compute the usual F' test of joint significance of the explanatory
variables.

4. If the p-value of the test is sufficiently small, reject the null of homoskedasticity
and conclude that the homoskedasticity assumption (MLR.5) fails.

53/53



	Multiple Regression Analysis with Qualitative Information
	A Single Dummy Independent Variable
	Dummy Variable Coefficients with log(y) as the Dependent Variable
	Dummy Variables for Multiple Categories

	Goodness-of-Fit and Selection of Regressors: the Adjusted R-Squared
	Heteroskedasticity & Robust Inference

