

Department of Economics

Quiz 6 Econ 526 - Introduction to Econometrics

Apr/15/2019 Instructor: Caio Vigo Pereira

Name:

SECTION A - MULTIPLE CHOICE

Consider the following simple linear regression models, where x, z and h are different independent variables.

Model (A): $y = \beta_0 + \beta_1 x + u$ Model (B): $y = \beta_0 + \beta_1 z + u$ Model (C): $y = \beta_0 + \beta_1 h + u$

Assuming you have a random sample, below are the scatter plots of your sample:

- 10% 1. Which models present heteroskedastic errors?
 - A. (A) and (B)
 - B. (B) and (C)
 - C. (A) and (C)
 - D. Only (B)
- 10% 2. Assuming that E(u|x) = E(u|z) = E(u|h) = 0 hold, for which models the OLS estimator will be unbiased?
 - A. (A), (B) and (C) B. (A) and (C) only
 - C. Only (B)
 - D. Only (A)
- 3. Assuming that E(u|x) = E(u|z) = E(u|h) = 0 hold, for which models the OLS estimator is more likely
 - to be BLUE?
 - A. (A), (B) and (C)
 - B. (A) and (C) only
 - C. Only (B)
 - D. Only (A)

10%

10%

SECTION C - SHORT ANSWER

Consider a model relating the annual number of crimes on college campuses to the number of police officers and student enrollment. The econometric model is:

 $log(crime) = \beta_0 + \beta_1 police + \beta_2 log(enroll) + u$

where crime is total campus crimes, *police* is the number of employed officers and *enroll* is the total enrollment. The R output is:

	Dependent variable:
	log(crime)
police	0.0240*** (0.0073)
log(enroll)	0.9767*** (0.1373)
Constant	-4.3758*** (1.1990)
Observations R2 Adjusted R2	97 0.6277 0.6198
Residual Std. Error F Statistic	79.2389***
Note:	*p<0.1; **p<0.05; ***p<0.01

1. Below you can find additional information about this regression:

$$x_{1} = \text{police}$$

$$x_{2} = \log(\text{crime})$$

$$\sum_{i=1}^{97} (y_{i} - \hat{y}_{i})^{2} = 68.18$$

$$\sum_{i=1}^{97} (x_{i1} - \bar{x}_{i1})^{2} = 23,454.25$$

- (a) Under the assumption of homoskedastic errors, what is the variance of $\hat{\beta}_{police}$, i.e., what is the formula of $Var(\hat{\beta}_{police})$? [One line answer]
- (b) What is the estimator of the variance of u given x_1, x_2 , i.e., the estimator of $Var(u|x_1, x_2)$? [One line answer]

- 20% (c) Based on your answer above, find $\hat{\sigma}^2$.
- 10% (d) Based on your answer above, find $\hat{\sigma}$, i.e., the Residual Standard Error.
- 20% (e) Consider the following (additional) regression:

$$\widehat{police} = -93.798 + 12.187 \ log(enroll)$$

 $n = 97, \ R^2 = 0.4206$

What is the $se(\hat{\beta}_{police})$? Is the $se(\hat{\beta}_{police})$ presented in the regression output table correct?