

# Department of Economics

## Final

# Econ 526 - Introduction to Econometrics

## May/13/2019Instructor: Caio Vigo Pereira

#### Name:

# SECTION A - MULTIPLE CHOICE

- 4%1. For the past 3 months you verified that every time the price of stock A raised, the price of stock B raised, and every time the price of stock A dropped, the price of stock B dropped. Then, based on your data, what is the  $\operatorname{Corr}(A, B)$ ? based on Quiz 1, A-3
  - A. -1
  - B. 1
  - C. 0
  - D. 0.5
- 4%2. Knowing that the estimator of the variance of the error term u given the explanatory variables  $x_1, x_2, \ldots, x_k$ , i.e., the estimator of  $Var(u|x_1, x_2, \ldots, x_k)$  is given by:

$$\hat{\sigma}^2 = \frac{SSR}{df}$$

What is the *Residual Standard Error*:  $\hat{\sigma}$ ?

A. 
$$\sqrt{\frac{\sum_{i=1}^{n}(y_i - \bar{y})^2}{n - k - 1}}$$
  
B.  $\sqrt{\frac{\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}{n - k - 1}}$   
C.  $\sqrt{\frac{\sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2}{n - k - 1}}$   
D.  $\sqrt{\frac{\sum_{i=1}^{n}(\bar{y} - \hat{y}_i)^2}{n - k}}$ 

3. Assume that the **Classical Linear Model (CLM)** assumptions hold. What is the distribution of  $\frac{\beta_j - \beta_j}{se(\hat{\beta}_j)}$ ? 4%

- based on Quiz 7, A-6 A.  $t_{df}$ , where df = n - k - 1B.  $F_{(q,n-k-1)}$ C.  $N(0,k^2)$ D. None of the above
- 4%

4. Consider a multiple linear regression model such as:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$ . It is known that under the Gauss-Markov assumptions, the OLS estimators are BLUE. What "B" refers to?

- A. That the OLS estimators have the smallest variance among the unbiased estimators
- B. That  $E(\hat{\beta}_i^{OLS}) = \beta_i$  for any  $\beta_0, \beta_1, \beta_2, \dots, \beta_k$
- C. That the OLS estimators have the smallest variance among all possible estimators
- D. That the OLS estimators are consistent

based on Quiz 6, C-1

- 5. The \_\_\_\_\_\_ is used to compare across models that have different numbers of explanatory variables but where one is **not** a special case of the other (i.e., **nonnested models**).
  - A.  $R^2$
  - B. t test
  - C. Adjusted  $\mathbb{R}^2$
  - D. F test
- 2.5% 6. EXTRA POINTS Among the statements below, which one is **NOT** under the *Classical Linear Model* assumptions?
  - A. the error term u is normally distributed
  - B. the error term u is independent of the explanatory variables
  - C. the error term  $\boldsymbol{u}$  has mean  $\boldsymbol{0}$
  - D. the variance of the error term u is a function of the explanatory variables
- 2.5% 7. [EXTRA POINTS] Which of the following can cause the usual OLS t statistics to be invalid (that is, not to have t distributions under the null hypothesis)?
  - A. Heteroskedasticity
  - B. Multicollinearity
  - C. Homoskedasticity
  - D. Exogenous variables

#### SECTION B - TRUE OR FALSE

- 3%1. Let X and Y be two independent random variables. Then Cov(X, Y) = 0.based on Quiz 1, B-1 $\bigcirc$  True $\bigcirc$  False
- 3% 2. We say that an estimator is unbiased if it has the smallest variance among all other estimators. based on Quiz 2, B-4 O True O False
- 3% 3. Let  $Y_1, Y_2, \ldots, Y_n$  be i.i.d. random variables with mean  $\mu$ , and variance  $\sigma^2$ . Consider the following estimator:  $W = Y_1$ . Then, W is a **biased** estimator of  $\mu$ .  $\bigcirc$  True  $\bigcirc$  False
- 3% 4. The following regression model:  $log(y) = \beta_0 + \beta_1 log(x_1) + u$  is also known as constant elasticity model. based on Quiz 4, B-4  $\bigcirc$  True  $\bigcirc$  False
- 3% 5. Let  $Y_1, Y_2, \ldots, Y_n$  be i.i.d. random variables with mean  $\mu$ . The Law of Large Numbers (LLN) states that  $\overline{Y}$  is an unbiased and efficient estimator of  $\mu$ .  $\bigcirc$  True  $\bigcirc$  False

Name:

3%6. Consider the following models: Model 1:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$ Model 2:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + u$ Then,  $SSR_{model1} \ge SSR_{model2}$ . based on Quiz 5, B-3  $\bigcirc$  False  $\bigcirc$  True 3%7. Exogenous explanatory variables is not a necessary assumption in order to the OLS estimator to be unbiased, however the assumption  $E(u|x_1,\ldots,x_k) = 0$  is necessary.  $\bigcirc$  False ⊖ True 3%8. Large absolute t statistics are associated with large p-values.  $\bigcirc$  True  $\bigcirc$  False 3%9. Multicollinearity violates the Gauss-Markov assumptions, and therefore the OLS estimators are not BLUE.

3% 10. Consider the following multiple linear regression model:

 $\bigcirc$  True  $\bigcirc$  False

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u$ 

Assume that the 95% confidence interval for  $\beta_1$  is [-2.254, -1.723]. Therefore,  $\hat{\beta}_1$  is statistically different from 0 at 5% significance level.  $\bigcirc$  True  $\bigcirc$  False

4%

4%

4%

2%

## SECTION C - SHORT ANSWER

Consider a data set containing a random sample with salary information and career statistics for 353 players in the Major League Baseball (MLB). The dataset consists of the following variables (variable's name and description):

| salary   | 1993 season salary measured in dollars |
|----------|----------------------------------------|
| teamsal  | team payroll measured in dollars       |
| years    | years in major leagues                 |
| games    | career games played                    |
| atbats   | career at bats                         |
| runs     | career runs scored                     |
| hits     | career hits                            |
| doubles  | career doubles                         |
| triples  | career triples                         |
| hruns    | career home runs                       |
| hispan   | =1 if hispanic                         |
| yrsallst | years as all-star                      |
| pcinc    | city per capita income                 |

1. (This question refers to **Regression (A)** below) Consider the following regression (*R* output) [Notice that the significance level "stars" - \*, \*\*, \*\*\* - were suppressed in this output]:

|                   | Dependent variable:          |
|-------------------|------------------------------|
|                   | salary                       |
| games             | 862.1545                     |
| -                 | (149.1432)                   |
| pcinc             | 0.8880                       |
|                   | (20.4365)                    |
| teamsal           | 0.0208                       |
|                   | (0.0068)                     |
| yrsallst          | 233,250.3000                 |
|                   | (38,526.0700)                |
| Constant          | -79,709.5200                 |
|                   | (406,023.3000)               |
| Observations      | 353                          |
| R2                | 0.4246                       |
| Adjusted R2       | 0.4180                       |
| Residual Std. Err | or $1,073,697.0000$ (df = 34 |
| F Statistic       | 64.1907 (df = 4; 348)        |

#### Regression (A)

- (a) State the null hypothesis that the team payroll has no *ceteris paribus* effect on a baseball player salary. State the alternative hypothesis that there is an effect? [Two lines answer]
- (b) Test the hypothesis stated above at the 1% significance level. Find the critical value. [Two lines answer]
  - (c) Do you reject the null hypothesis? Explain the statistical significance of your test at 1% significance level. [Two lines answer]
- (d) Would you include *teamsal* in a final model explaining *salary* for players in the MLB? Why? Explain. [One line answer]

4%

4%

2%

4%

4%

4%

4%

(e) Find the 99% confidence interval for  $\beta_{games}$ .

- (f) Is the variable games statistically significant at 1% significance level?
  - 2. (This question refers to **Regression (B)** below) Consider the following (additional) regression:

## Regression (B)

|                                                                         | Dependent variable:                                                              |                                                                                                                                                                                |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | salary                                                                           | Call:<br>lm(formula = salary ~ games + pcinc + teamsal + yrsallst + hruns +                                                                                                    |
| games                                                                   | -944.9137*<br>(538.2324)                                                         | hits)                                                                                                                                                                          |
| pcinc                                                                   | 0.2409<br>(19.7416)                                                              | Residuals:<br>Min 1Q Median 3Q Max<br>-4067915 -575667 -275468 354541 3618185                                                                                                  |
| teamsal                                                                 | 0.0203***<br>(0.0065)                                                            | Coefficients:                                                                                                                                                                  |
| yrsallst                                                                | 106,998.2000**<br>(47,154.2200)                                                  | Estimate Std. Error t value Pr(> t )<br>(Intercept) 5.436e+04 3.945e+05 0.138 0.89050                                                                                          |
| hruns                                                                   | 5,494.6750***<br>(1,237.3210)                                                    | games -9.449e+02 5.382e+02 -1.756 0.08004 .<br>pcinc 2.409e-01 1.974e+01 0.012 0.99027<br>teamsal 2.031e-02 6.535e-03 3.109 0.00204 **                                         |
| hits                                                                    | 1,498.2190***<br>(561.1967)                                                      | yrsallst 1.070e+05 4.715e+04 2.269 0.02388 *<br>hruns 5.495e+03 1.237e+03 4.441 1.21e-05 ***                                                                                   |
| Constant                                                                | 54,356.1000<br>(394,524.3000)                                                    | hits 1.498e+03 5.612e+02 2.670 0.00795 **<br><br>Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1                                                                 |
| Observations<br>R2<br>Adjusted R2<br>Residual Std. Error<br>F Statistic | 353<br>0.4676<br>0.4584<br>1.035,719.0000 (df = 346)<br>50.6544*** (df = 6; 346) | Residual standard error: 1036000 on 346 degrees of freedom<br>Multiple R-squared: 0.4676, Adjusted R-squared: 0.4584<br>F-statistic: 50.65 on 6 and 346 DF, p-value: < 2.2e-16 |
| Note:                                                                   | *p<0.1; **p<0.05; ***p<0.01                                                      |                                                                                                                                                                                |

- (a) Which independent variables are statistically significant at 1% significance level. List their names. [*Hint:* no computation required.] [One line answer]
- (b) Using the data from both regressions, state the null and alternative hypothesis that *hruns* and *hits* are **jointly** significant. Write down the unrestricted and the restricted model. [Four lines answer]
- (c) Test the hypothesis stated above at the 1% significance level. Find the critical value. Test the same hypothesis again at the 5% significance level. Find the critical value. [Four lines answer]
- (d) Do you reject the null hypothesis? Explain the statistical significance of your test at 1% significance level. *Hint:* Don't forget to use a specific word when explaining the statistical significance. [Four lines answer]
- (e) Using **Regression** (B), state the null and alternative hypothesis of the F statistic for overall significance of a regression. Do you reject the null hypothesis? Explain the statistical significance of your test at 1% significance level. [Three lines answer]

[One line answer]

[One line answer]

3%

2%

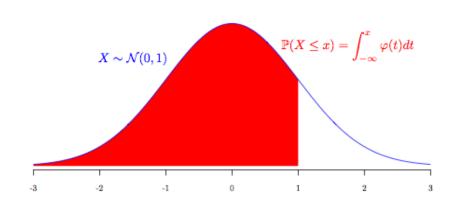
5%

5%

3. (This question refers to **Regression** (C) below).

| -                   | 、 <i>′</i>                  |
|---------------------|-----------------------------|
|                     | Dependent variable:         |
|                     | log(salary)                 |
| hruns               | 0.0025**                    |
|                     | (0.0010)                    |
| hits                | 0.0011***                   |
|                     | (0.0001)                    |
| hispan              | -0.0879                     |
|                     | (0.1244)                    |
| Constant            | 12.7372***                  |
|                     | (0.0730)                    |
|                     |                             |
| Observations        | 353                         |
| R2                  | 0.4366                      |
| Adjusted R2         | 0.4318                      |
| Residual Std. Error |                             |
| F Statistic         | 50.1011 (al 6, 615)         |
| Note:               | *p<0.1; **p<0.05; ***p<0.01 |
|                     |                             |

## Regression (C)


- (a) What is the estimated average difference in salary between being *hispanic* or not, for players with the same number of hits and home runs? Show your answer using (i) approximation and the (ii) precise estimated average difference. [*Hint: Notice that the dependent variable is in log*] [Three lines answer]
  - (b) All other factors being equal, is there any statistical evidence that being a *hispanic* impacts the salary of a MLB player? Consider 1% significance level in your answer. [Two lines answer]

#### 4. [Gauss-Markov Theorem]

- (a) Under which assumptions does the Gauss-Markov theorem holds? State and briefly explain each one of them. [One line answer per assumption]
- (b) What does the acronym "BLUE" stands for?

[Two lines answer]

Standard Normal Distribution



|     | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   | 0.09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0.9817 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990 |
|     |        |        |        |        |        |        |        |        |        |        |

|           |          | Significance Level |       |        |        |        |  |  |  |  |  |
|-----------|----------|--------------------|-------|--------|--------|--------|--|--|--|--|--|
| 1-Tailed: |          | .10                | .05   | .025   | .01    | .005   |  |  |  |  |  |
| 2-Tailed: |          | .20                | .10   | .05    | .02    | .01    |  |  |  |  |  |
|           | 1        | 3.078              | 6.314 | 12.706 | 31.821 | 63.657 |  |  |  |  |  |
|           | 2        | 1.886              | 2.920 | 4.303  | 6.965  | 9.925  |  |  |  |  |  |
|           | 3        | 1.638              | 2.353 | 3.182  | 4.541  | 5.841  |  |  |  |  |  |
|           | 4        | 1.533              | 2.132 | 2.776  | 3.747  | 4.604  |  |  |  |  |  |
|           | 5        | 1.476              | 2.015 | 2.571  | 3.365  | 4.032  |  |  |  |  |  |
|           | 6        | 1.440              | 1.943 | 2.447  | 3.143  | 3.707  |  |  |  |  |  |
|           | 7        | 1.415              | 1.895 | 2.365  | 2.998  | 3.499  |  |  |  |  |  |
|           | 8        | 1.397              | 1.860 | 2.306  | 2.896  | 3.355  |  |  |  |  |  |
|           | 9        | 1.383              | 1.833 | 2.262  | 2.821  | 3.250  |  |  |  |  |  |
|           | 10       | 1.372              | 1.812 | 2.228  | 2.764  | 3.169  |  |  |  |  |  |
| _         | 11       | 1.363              | 1.796 | 2.201  | 2.718  | 3.106  |  |  |  |  |  |
| D<br>e    | 12       | 1.356              | 1.782 | 2.179  | 2.681  | 3.055  |  |  |  |  |  |
| g         | 13       | 1.350              | 1.771 | 2.160  | 2.650  | 3.012  |  |  |  |  |  |
| r         | 14       | 1.345              | 1.761 | 2.145  | 2.624  | 2.977  |  |  |  |  |  |
| e         | 15       | 1.341              | 1.753 | 2.131  | 2.602  | 2.947  |  |  |  |  |  |
| e<br>s    | 16       | 1.337              | 1.746 | 2.120  | 2.583  | 2.921  |  |  |  |  |  |
|           | 17       | 1.333              | 1.740 | 2.110  | 2.567  | 2.898  |  |  |  |  |  |
| 0         | 18       | 1.330              | 1.734 | 2.101  | 2.552  | 2.878  |  |  |  |  |  |
| f         | 19       | 1.328              | 1.729 | 2.093  | 2.539  | 2.861  |  |  |  |  |  |
| F         | 20       | 1.325              | 1.725 | 2.086  | 2.528  | 2.845  |  |  |  |  |  |
| r         | 21       | 1.323              | 1.721 | 2.080  | 2.518  | 2.831  |  |  |  |  |  |
| e<br>e    | 22       | 1.321              | 1.717 | 2.074  | 2.508  | 2.819  |  |  |  |  |  |
| d         | 23       | 1.319              | 1.714 | 2.069  | 2.500  | 2.807  |  |  |  |  |  |
| 0         | 24       | 1.318              | 1.711 | 2.064  | 2.492  | 2.797  |  |  |  |  |  |
| m         | 25       | 1.316              | 1.708 | 2.060  | 2.485  | 2.787  |  |  |  |  |  |
|           | 26       | 1.315              | 1.706 | 2.056  | 2.479  | 2.779  |  |  |  |  |  |
|           | 27       | 1.314              | 1.703 | 2.052  | 2.473  | 2.771  |  |  |  |  |  |
|           | 28       | 1.313              | 1.701 | 2.048  | 2.467  | 2.763  |  |  |  |  |  |
|           | 29       | 1.311              | 1.699 | 2.045  | 2.462  | 2.756  |  |  |  |  |  |
|           | 30       | 1.310              | 1.697 | 2.042  | 2.457  | 2.750  |  |  |  |  |  |
|           | 40       | 1.303              | 1.684 | 2.021  | 2.423  | 2.704  |  |  |  |  |  |
|           | 60       | 1.296              | 1.671 | 2.000  | 2.390  | 2.660  |  |  |  |  |  |
|           | 90       | 1.291              | 1.662 | 1.987  | 2.368  | 2.632  |  |  |  |  |  |
|           | 120      | 1.289              | 1.658 | 1.980  | 2.358  | 2.617  |  |  |  |  |  |
|           | $\infty$ | 1.282              | 1.645 | 1.960  | 2.326  | 2.576  |  |  |  |  |  |

Critical Values of the t-distribution

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.

|        |          | Numerator Degrees of Freedom |      |      |      |      |      |      |      |      |      |  |
|--------|----------|------------------------------|------|------|------|------|------|------|------|------|------|--|
|        |          | 1                            | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |  |
|        | 10       | 10.04                        | 7.56 | 6.55 | 5.99 | 5.64 | 5.39 | 5.20 | 5.06 | 4.94 | 4.85 |  |
| D      | 11       | 9.65                         | 7.21 | 6.22 | 5.67 | 5.32 | 5.07 | 4.89 | 4.74 | 4.63 | 4.54 |  |
| е      | 12       | 9.33                         | 6.93 | 5.95 | 5.41 | 5.06 | 4.82 | 4.64 | 4.50 | 4.39 | 4.30 |  |
| n<br>o | 13       | 9.07                         | 6.70 | 5.74 | 5.21 | 4.86 | 4.62 | 4.44 | 4.30 | 4.19 | 4.10 |  |
| m      | 14       | 8.86                         | 6.51 | 5.56 | 5.04 | 4.69 | 4.46 | 4.28 | 4.14 | 4.03 | 3.94 |  |
| i      | 15       | 8.68                         | 6.36 | 5.42 | 4.89 | 4.56 | 4.32 | 4.14 | 4.00 | 3.89 | 3.80 |  |
| n      | 16       | 8.53                         | 6.23 | 5.29 | 4.77 | 4.44 | 4.20 | 4.03 | 3.89 | 3.78 | 3.69 |  |
| a<br>t | 17       | 8.40                         | 6.11 | 5.18 | 4.67 | 4.34 | 4.10 | 3.93 | 3.79 | 3.68 | 3.59 |  |
| 0      | 18       | 8.29                         | 6.01 | 5.09 | 4.58 | 4.25 | 4.01 | 3.84 | 3.71 | 3.60 | 3.51 |  |
| r      | 19       | 8.18                         | 5.93 | 5.01 | 4.50 | 4.17 | 3.94 | 3.77 | 3.63 | 3.52 | 3.43 |  |
|        | 20       | 8.10                         | 5.85 | 4.94 | 4.43 | 4.10 | 3.87 | 3.70 | 3.56 | 3.46 | 3.37 |  |
| D<br>e | 21       | 8.02                         | 5.78 | 4.87 | 4.37 | 4.04 | 3.81 | 3.64 | 3.51 | 3.40 | 3.31 |  |
| g      | 22       | 7.95                         | 5.72 | 4.82 | 4.31 | 3.99 | 3.76 | 3.59 | 3.45 | 3.35 | 3.26 |  |
| r      | 23       | 7.88                         | 5.66 | 4.76 | 4.26 | 3.94 | 3.71 | 3.54 | 3.41 | 3.30 | 3.21 |  |
| е      | 24       | 7.82                         | 5.61 | 4.72 | 4.22 | 3.90 | 3.67 | 3.50 | 3.36 | 3.26 | 3.17 |  |
| e<br>s | 25       | 7.77                         | 5.57 | 4.68 | 4.18 | 3.85 | 3.63 | 3.46 | 3.32 | 3.22 | 3.13 |  |
| 3      | 26       | 7.72                         | 5.53 | 4.64 | 4.14 | 3.82 | 3.59 | 3.42 | 3.29 | 3.18 | 3.09 |  |
| ο      | 27       | 7.68                         | 5.49 | 4.60 | 4.11 | 3.78 | 3.56 | 3.39 | 3.26 | 3.15 | 3.06 |  |
| f      | 28       | 7.64                         | 5.45 | 4.57 | 4.07 | 3.75 | 3.53 | 3.36 | 3.23 | 3.12 | 3.03 |  |
| F      | 29       | 7.60                         | 5.42 | 4.54 | 4.04 | 3.73 | 3.50 | 3.33 | 3.20 | 3.09 | 3.00 |  |
| r      | 30       | 7.56                         | 5.39 | 4.51 | 4.02 | 3.70 | 3.47 | 3.30 | 3.17 | 3.07 | 2.98 |  |
| е      | 40       | 7.31                         | 5.18 | 4.31 | 3.83 | 3.51 | 3.29 | 3.12 | 2.99 | 2.89 | 2.80 |  |
| e      | 60       | 7.08                         | 4.98 | 4.13 | 3.65 | 3.34 | 3.12 | 2.95 | 2.82 | 2.72 | 2.63 |  |
| d<br>o | 90       | 6.93                         | 4.85 | 4.01 | 3.54 | 3.23 | 3.01 | 2.84 | 2.72 | 2.61 | 2.52 |  |
| m      | 120      | 6.85                         | 4.79 | 3.95 | 3.48 | 3.17 | 2.96 | 2.79 | 2.66 | 2.56 | 2.47 |  |
|        | $\infty$ | 6.63                         | 4.61 | 3.78 | 3.32 | 3.02 | 2.80 | 2.64 | 2.51 | 2.41 | 2.32 |  |

## 1% Critical Values of the F Distribution

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.

|          |          | Numerator Degrees of Freedom |      |      |      |      |      |      |      |      |      |
|----------|----------|------------------------------|------|------|------|------|------|------|------|------|------|
|          |          | 1                            | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
| D        | 10       | 4.96                         | 4.10 | 3.71 | 3.48 | 3.33 | 3.22 | 3.14 | 3.07 | 3.02 | 2.98 |
| e        | 11       | 4.84                         | 3.98 | 3.59 | 3.36 | 3.20 | 3.09 | 3.01 | 2.95 | 2.90 | 2.85 |
| n        | 12       | 4.75                         | 3.89 | 3.49 | 3.26 | 3.11 | 3.00 | 2.91 | 2.85 | 2.80 | 2.75 |
| ο        | 13       | 4.67                         | 3.81 | 3.41 | 3.18 | 3.03 | 2.92 | 2.83 | 2.77 | 2.71 | 2.67 |
| m        | 14       | 4.60                         | 3.74 | 3.34 | 3.11 | 2.96 | 2.85 | 2.76 | 2.70 | 2.65 | 2.60 |
| l<br>m   | 15       | 4.54                         | 3.68 | 3.29 | 3.06 | 2.90 | 2.79 | 2.71 | 2.64 | 2.59 | 2.54 |
| n<br>a   | 16       | 4.49                         | 3.63 | 3.24 | 3.01 | 2.85 | 2.74 | 2.66 | 2.59 | 2.54 | 2.49 |
| t        | 17       | 4.45                         | 3.59 | 3.20 | 2.96 | 2.81 | 2.70 | 2.61 | 2.55 | 2.49 | 2.45 |
| ο        | 18       | 4.41                         | 3.55 | 3.16 | 2.93 | 2.77 | 2.66 | 2.58 | 2.51 | 2.46 | 2.41 |
| r        | 19       | 4.38                         | 3.52 | 3.13 | 2.90 | 2.74 | 2.63 | 2.54 | 2.48 | 2.42 | 2.38 |
| <b>_</b> | 20       | 4.35                         | 3.49 | 3.10 | 2.87 | 2.71 | 2.60 | 2.51 | 2.45 | 2.39 | 2.35 |
| D<br>e   | 21       | 4.32                         | 3.47 | 3.07 | 2.84 | 2.68 | 2.57 | 2.49 | 2.42 | 2.37 | 2.32 |
| g        | 22       | 4.30                         | 3.44 | 3.05 | 2.82 | 2.66 | 2.55 | 2.46 | 2.40 | 2.34 | 2.30 |
| ř        | 23       | 4.28                         | 3.42 | 3.03 | 2.80 | 2.64 | 2.53 | 2.44 | 2.37 | 2.32 | 2.27 |
| е        | 24       | 4.26                         | 3.40 | 3.01 | 2.78 | 2.62 | 2.51 | 2.42 | 2.36 | 2.30 | 2.25 |
| е        | 25       | 4.24                         | 3.39 | 2.99 | 2.76 | 2.60 | 2.49 | 2.40 | 2.34 | 2.28 | 2.24 |
| S        | 26       | 4.23                         | 3.37 | 2.98 | 2.74 | 2.59 | 2.47 | 2.39 | 2.32 | 2.27 | 2.22 |
| о        | 27       | 4.21                         | 3.35 | 2.96 | 2.73 | 2.57 | 2.46 | 2.37 | 2.31 | 2.25 | 2.20 |
| f        | 28       | 4.20                         | 3.34 | 2.95 | 2.71 | 2.56 | 2.45 | 2.36 | 2.29 | 2.24 | 2.19 |
|          | 29       | 4.18                         | 3.33 | 2.93 | 2.70 | 2.55 | 2.43 | 2.35 | 2.28 | 2.22 | 2.18 |
| F        | 30       | 4.17                         | 3.32 | 2.92 | 2.69 | 2.53 | 2.42 | 2.33 | 2.27 | 2.21 | 2.16 |
| r        | 40       | 4.08                         | 3.23 | 2.84 | 2.61 | 2.45 | 2.34 | 2.25 | 2.18 | 2.12 | 2.08 |
| e<br>e   | 60       | 4.00                         | 3.15 | 2.76 | 2.53 | 2.37 | 2.25 | 2.17 | 2.10 | 2.04 | 1.99 |
| d        | 90       | 3.95                         | 3.10 | 2.71 | 2.47 | 2.32 | 2.20 | 2.11 | 2.04 | 1.99 | 1.94 |
| 0        | 120      | 3.92                         | 3.07 | 2.68 | 2.45 | 2.29 | 2.17 | 2.09 | 2.02 | 1.96 | 1.91 |
| m        | $\infty$ | 3.84                         | 3.00 | 2.60 | 2.37 | 2.21 | 2.10 | 2.01 | 1.94 | 1.88 | 1.83 |

# 5% Critical Values of the F Distribution

Source: Wooldridge, Jeffrey M. Introductory Econometrics, 2015.