


Department of Economics

Quiz 5 Econ 526 - Introduction to Econometrics

Oct/26/2018 Instructor: Caio Vigo Pereira

Name:

SECTION A - MULTIPLE CHOICE

10% 1. Consider the 4 models above. Which models present homoskedastic errors? A. Only (A)

- B. Only (D)
- C. (A) and (D)
- D. (B) and (C)

SECTION B - TRUE OR FALSE

Consider a random sample with 705 observations of house purchases in Kansas. Your dataset consists of the following variables (variable's name and variable description):

house_price	price paid in thousands of dollars
number_bedrs	number of bedrooms
number_masterbedrs	number of master bedrooms
number_fullbaths	number of full bathrooms
number_halfbaths	number of half bathrooms
number_baths	<pre>= number_fullbaths + number_halfbaths</pre>
$year_construction$	year of the construction of the house
crime_rate	crime rate in the neighborhood
lot_size	lot size in square feet

10% 1. Consider the following regression model:

 $log(house_price) = \beta_0 + \beta_1 log(lot_size) + log(\beta_2)crime_rate + u$

where log() represents the natural logarithm. Then this model is linear in parameters. \bigcirc True \bigcirc False

10% 2. Consider the following regression model:

 $house_price = \beta_0 + \beta_1 number_bedrs + \beta_2 number_masterbedrs + u$

Then this model suffers from perfect collinearity. \bigcirc True \bigcirc False

10% 3. Consider the following regression model:

 $house_price = \beta_0 + \beta_1 number_bedrs + \beta_2 number_baths + \beta_3 number_fullbaths + \beta_4 number_halfbaths + u_1 + \beta_2 number_baths + \beta_3 number_fullbaths + \beta_4 number_halfbaths + u_2 + \beta_3 number_fullbaths + \beta_4 number_halfbaths + u_3 + \beta_4 number_halfbaths + \beta_4 number_halfbaths$

Then this model suffers from perfect collinearity. \bigcirc True \bigcirc False

10% 4. Consider the same regression model, i.e.:

 $house_price = \beta_0 + \beta_1 number_bedrs + \beta_2 number_baths + \beta_3 number_fullbaths + \beta_4 number_halfbaths + u$

If we run an OLS regression for this model, we will have 701 degrees of freedom. $\bigcirc~{\rm True}~~\bigcirc~{\rm False}$

SECTION C - SHORT ANSWER

40% 1. The **Gauss-Markov Theorem** states that under MLR.1 through MLR. 5 (i.e., Gauss-Markov assumptions) the OLS estimators of the parameters of a regression model are BLUE.

- (a) What "E" stands for? Explain.
- (b) What "U" stands for? Explain.
- (c) What "L" stands for? Explain.
- (d) What "B" stands for? Explain.